	D. S. P. M's K.V. Pendharkar College of Arts, Science and Commerce Department of Botany	
PROGRAMME AND COURSE F.Y.B.Sc BOTANY	COURSE OUTCOME	PROGRAM SPECIFIC OUTCOME
USBO101 Plant Diversity I	On completion of this course the student would be able to: CO1: Gain knowledge about the general characters of division Chlorophyta (i.e. and its economic importance) and to Understand the systematic position, life cycle of <i>Spirogyra and Nostoc</i> . CO2: Know economic importance of Algae. CO3: Understand the life cycle of <i>Rhizopus</i> and <i>Aspergillus</i> and to learn the mode of nutrition in Fungi especially Saprophytism and Parasitism. CO4: Understand the general characters of Class Hepaticae and the systematic position, structure, life cycle of <i>Riccia</i> .	PO1: The students in general will be able to understand the traditional botany and upcoming modern computational and applied approach in botany. In view of above, an adequate balance of topics is introduced for undergraduate students which enable them to understand the concepts of lower and higher plants, anatomy physiology, medicinal botany, functional aspects of various cellular processes of plants, ecology, cell biology and modern tools i.e. tissue culture, genetics and field study.
USBO201 Plant Diversity I	The student would be able to: CO1: Understand life cycle , the systematic position and alternation of generations in <i>Neprolepis</i> CO2: Learn the Stelar evolution in Pteridophyte. CO3: Know life cycle, the systematic position and alternation of generations of <i>Cycas</i> as well as to know economic importance of Gymnosperm. CO4: Develop critical understanding on morphology of leaf and Inflorescence. CO5: Identify, classify and describe the characteristics of Families Malvaceae and Amaryllidaceae.	PO2: The field study along with the laboratory practicals, enhances their higher cognitive skills. The students are provided with environment that ensures cognitive development in a holistic manner. A dialogue about plants and its significance is fostered rather than didactic monologues on mere theoretical aspects. Students will acquire core competency in the subject Botany, and in allied subject areas.
USBO102 Form and Function 1	On completion of this course the student would be able to: CO1: Understand general structure of plant cell. CO2: Gain knowledge about ultrastructure, composition	

	and functions of marians alout call anomalies 1 11	DO2. The students are equipped in solution of the
	and functions of various plant cell organelles such as cell	PO3: The students are equipped in solving the
	wall, plasma membrane, endoplasmic reticulum and	biostatistical problems. Students develops the
	chloroplast.	ability of critical thinking application of
	CO3: Learn about energy pyramids and how energy flows	various statistical methods like mean, median,
	in an ecosystem.	mode, standard deviation, pie chart, histogram
	CO4: Acquire knowledge about terrestrial and aquatic	and frequency distribution.
	ecosystem.	
	CO5: Have an understanding about phenotype and	
	genotype and to understand mendelian genetics-	
	monohybrid, dihybrid; test cross; back cross ratios	PO4: The student will be able to identify
USBO202 Form and	The student would be able to:	major groups of plants and compare the
Function 1	CO1: Learn about simple and complex plant tissues.	characteristics of lower (e.g. algae, fungi,
	CO2: Gain knowledge of primary structure of dicot and	bryophytes and pteridophytes) and higher
	monocot root, stem and leaf and to identify types of	(angiosperms and gymnosperms) plants.
	epidermal hair, monocot and dicot stomata and learn	
	about epidermal tissue system.	
	CO3: Have an understanding of Light reactions,	PO5: Students will be able to use the evidence
	photolysis of water, cyclic and non cyclic	based comparative botany approach to explain
	photophosphorylation, C3, C4 and CAM pathways	ecosystem and understand the Mendelian
	involved in the process of photosynthesis.	genetics.
	CO4: Get familiar with the concept of primary and	
	secondary metabolites, difference between primary and	
	secondary metabolites.	PO6: The students will be able to explain
	CO5: Know about botanical source, part of the plant used,	various plant processes and functions,
	active constituents present and medicinal uses of plants of	metabolism, concepts of gene, genome and
	grandma's pouch using examples of Oscimum sanctum,	how organism's function is influenced at the
	Adathoda vasica, Zinziber officinale, Curcuma longa,	cell, tissue and organ level.
	Santalum album, Aloe vera.	, , , , , , , , , , , , , , , , , , , ,
USBOP1 (01) Plant	On the completion of the course the student would be	
Diversity Practical 1	able to :	
	CO1: Identify and describe the morphological and	
	anatomical characteristics of <i>Nostoc and Spirogyra</i> .	
	CO2: Describe the economic importance of Algae.	
	CO2. Deserve die cononne importance of Algae.	

	CO3: Develop an understanding of economic importance	PO7: Students will be able to understand
	of fungi along with the demonstration skills in laboratory,	ecological adaptation, development and
	field and glasshouse work related to mycology and	behavior of plants.
	develop an understanding of fungi like <i>Rhizopus and</i>	benavior of plants.
	Aspergillus.	
	CO5: Demonstrate an understanding of antheridia,	PO8: The understanding of networked life on
	archegonia, and sporophyte of Bryophytes using <i>Riccia</i> as	earth and tracing the energy pyramids through
	a specimen.	nutrient flow is known by the students.
USBOP2 (01) Plant	On the completion of the course the student would be	nutrent now is known by the students.
Diversity	able to:	
Diversity	CO1: Demonstrate an understanding of Pteridophytes	PO9: Students will be able to demonstrate the
	through the study of life cycle, the systematic position	experimental techniques and methods during
	and alternation of generations in <i>Nephrolepis</i> .	practicals.
	CO2: Develop critical understanding on morphology,	practicals.
	anatomy and reproduction of Gymnosperms like <i>Cycas</i> .	
	CO3: Develop critical understanding on morphology of	PO10: The students will be able to
	leaf and inflorescence through study of common plant of	demonstrate the knowledge in understanding
	nearby locality.	research and addressing practical problems
	CO4: To identify, classify and describe the characteristics	which will be helpful in developing analytical
	of Families Malvaceae and Amaryllidaceae	ability.
USBOP1 (02) Form	On the completion of the course the student would be	aomry.
and Function I	able to:	PO11: Students will become critical thinker
	CO1: Examine various stages of mitosis in root tip cells	and acquire problem solving capabilities
	of Allium.	through an increased understanding of
	CO2: Demonstrate and identify cell inclusions such as	fundamental concepts and their applications
	concentric and eccentric type of starch grains, aleurone	of scientific principles.
	layer, Cystolith, Raphides and Sphaeraphides.	or sciencific principles.
	CO3: Identify various plant cell organelles such Plastids:	
	Chloroplast, Amyloplast, Endoplasmic Reticulum and	
	Nucleus with the help of photomicrograph.	
	CO4: Observe and learn about different types of	
	ecological adaptations through specimens of	
	Pistia/Eichornia, Nymphaea, Hydrilla, Typha/Cyperus,	

	<i>Opuntia, Nerium, Avicennia</i> pneumatophores. CO5: Develop the skills of statistics by calculating mean, median, mode and standard deviation. CO6: Understand
	about Frequency distribution, graphical representation of
	data- frequency polygon, histogram, and pie chart.
	CO7: Learn about Karyotype of normal male, female and
	Allium cepa.
USBOP2 (02) Form	On the completion of the course the student would be
and Function	able to:
	CO1: Demonstrate and learn about primary structure of
	monocot and dicot root, stem and stomata.
	CO2: Understand about unicellular, multicellular,
	glandular, peltate, stellate and T- shaped epidermal outgrowths in plants.
	CO3: Develop the skills of chromatography by
	performing separation of chlorophyll pigments and amino
	acids in laboratory.
	CO4: Perform of the colour of anthocyanin changes with
	the change in pH.
	CO5: Test the amount of tannins from tea powder or
	Areca catechu.
	CO6: Identify various plants of grandma's pouch.

PROGRAMME	COURSE OUTCOME	PROGRAM SPECIFIC OUTCOME
AND COURSE		
S.Y.B.Sc BOTANY		
USBO301 Plant	On completion of this course the student would be able	PSO1: The students in general will be able to
Diversity	to: CO1: To gain knowledge about the general characters	understand Classical Botany, current scientific
	of division Phaeophyta (brown algae) and the life cycle of	and industrial trends along with its applied
	Sargassum	approach. In view of above, an adequate balance
	CO2: To understand the general characters of Class	of topics is introduced for undergraduate
	Anthocerotae (hornworts) and Class Musci (moss) and	students, enabling them to build their basic
	the systematic position, life cycle of <i>Anthoceros</i> and	concepts regarding, anatomy, physiology,
	Funaria.	pharmacognosy, functional aspects of various
	CO3: To learn the relation between Plant Taxonomy and	cellular processes of plants, ecology, cell biology
	Anatomy, Palynology, Embryology, Ecology, Cytology	and modern tools, like tissue culture,
	and Phytochemical constituents and write down the objectives of plant systematics and nomenclature.	recombinant DNA technology and field study.
	CO4: To know the morphological and diagnostic	
	characteristics and economic importance of Angiospermic	PSO2: The field study along with the laboratory
	plant families Leguminosae, Asteraceae, Amaranthaceae	practicals enhances their thinking ability. The
	and Palmae.	students are provided with environment that
	CO5: To acquire skills of modern techniques such as wet	ensures cognitive development in a holistic
	and dry preservation and study the principle and working	manner. A dialogue about plants and its
	of light and electron microscopy.	significance is fostered rather than didactic
	CO6: To update the concepts of paper and Thin-Layer	monologues on mere theoretical aspects.
	Chromatography (TLC) and Gel Electrophoresis	Students will acquire core competency in the
USBO401 Plant	On completion of this course the student would be able	subject, and in allied subject areas.
Diversity	to:	
	CO1: To understand general characters of class	PSO3: The students are equipped in using
	Ascomycetae (sac fungi) and to study the life cycle of	experimental, analytical as well as biostatistical
	Xylaria and Erysiphe, symptoms, disease cycle and	tools. Students develop the ability of applying
	control measures of the fungal diseases - Powdery	the essential statistical methods like determining
	Mildew and Late Blight of Potato.	the coefficient of Correlation and the Chi-square
	CO2: To learn the classification, structure, reproduction	test in practical sense.
	and ecological and economic importance of lichens.	

	CO3: To know general characters of division Psilophyta	PSO4: The students would be able to identify,
	and Lepidophyta and understand the life cycle of	classify and describe the major plant groups of
	Selaginella.	lower (e.g. algae, fungi, bryophytes and
	CO4: To relate the concept of Palaeobotany with respect	pteridophytes) and higher (angiosperms and
	to geological time scale, types of fossils and structure of	gymnosperms) plants. Special emphasis is also
	Rhynia.	given regarding their economic importance and
	CO5: To learn the salient features, classification upto	phylogeny. They will also understand the
	orders and economic importance of Coniferophyta; also	classical as well as modern (applied) taxonomic
	write down the systematic position and life-cycle of	systems.
	Pinus.	
	CO6: To understand the structure and systematic position	PSO5: Along with phylogenetic studies of living
	of form genus Cordaites	plants, they are also enlightened about
USBO302 Form and	On the completion of the course student would be able to	morphology as well as behavior of extinct plants,
Function-II	CO1: To study the ultra structure and functions of the cell	covered comprehensively in Paleobotany.
	organelles, namely Mitochondria, Micro bodies and	
	Ribosomes.	
	CO2: To understand cell division, its significance and the	PSO6: Students will be able to use the evidence
	types and structure of nucleic acids.	based comparative botany approach to explain
	CO3: To study chromosomal aberrations and different	ecosystem and understand the fundamentals of
	methods of sex determination, sex linked, sex influences	cytogenetic as well as molecular biology. Not
	and sex limited traits.	only does the student understand the underlying
	CO4: To understand the concept of extra-chromosomal	theoretical concepts behind cytogenetic and
	inheritance.	molecular biology, but also gains a practical approach regarding its direct applications,
	CO5: To study DNA replication in prokaryotes and	namely in commonly implemented techniques
	eukaryotes. CO6: To study transcription of RNA and post	like plant tissue culture (PTC) and recombinant
	transcriptional modifications	DNA (R-DNA) technology. Aforementioned
USBO402 Form and	On the completion of the course the student would be	techniques have direct applications in
Function-II	able to:	laboratories and industries.
	CO1: To study normal secondary growth in dicot root and	
	stem. Also to study the mechanical tissue system.	
	CO2: To understand the different types of vascular	
	bundles. CO3: To study respiration and photorespiration.	

	CO4: To understand the concept of photoperiodic and	
	vernalization. CO5: To study carbon, nitrogen and water cycles CO6:	PSO7: The students will be able to explain the
	To study soil as an edaphic factor and qualitative and	physiological processes behind respiration in
	quantitative characters of community	plants.
USBO303 Current	The student would be able to:	
Trends in Plant	CO1: To study the Indian Pharmacopoeia, Indian Herbal	
Sciences-I	Pharmacopoeia, Ayurvedic Pharmacopoeia of India and	PSO8: Students will be able to understand
	Monographs.	behavior of plants with respect to ecology
	CO2: To understand the different secondary metabolites,	
	seasonal and regional variations and adulterants. CO3: To study the outline of forest types in India,	PSO9: Students are also introduced to the
	agroforestry, organic farming, urban forestry and	fundamentals of horticulture and gardening.
	Silviculture.	fundamentals of norticulture and gardening.
	CO4: To understand the sources, types and uses of fibres	
	and spices and condiments.	
	CO5: To study aromatherapy and nutraceuticals.	PSO10: Students will be able to utilize
	CO6: To study plant enzyme based industry and biofuel.	bioinformatical tools (namely Entrez and
USBO403 Current	The student would be able to:	BLAST) for foraging and managing biological
Trends in Plant	CO1: To study the different garden features.	data. Also, they are introduced to the concepts
Sciences	CO2: To understand the concept of different types of	and importance of Pharmacognosy.
	gardens, formal and informal.	
	CO3: To study plant tissue culture with reference to	
	organogenesis, totipotency, embryo, root, meristem and	
	anther culture.	PSO11: The students will be able to demonstrate
	CO4: To understand the concept of gene cloning with reference to enzymes and vectors used in gene cloning	the knowledge in understanding research and
	CO5: To study Chi square test and coefficient of	addressing practical problems which will be
	correlation.	helpful in developing analytical ability.
	CO6: To study the concept of Bioinformatics.	
	coor to study the concept of Bioinformatics.	

		PSO12: Students will become critical thinkers and acquire problem solving capabilities through an increased understanding of fundamental concepts and their applications of scientific principles.
USBOP3 (01) Plant	On the completion of the course the student would be	
Diversity	 able to: CO1: Identify and understand the morphological and anatomical characteristics of <i>Sargassum</i> and describe the range of thallus in brown algae CO2: Identify and demonstrate an understanding of morphology, gametophyte-sporophyte differences of bryophytes using <i>Anthoceros</i> and <i>Funaria</i> as specimens. CO3: Identify, classify and describe the characteristics of Families Leguminosae, Asteraceae, Amaranthaceae and Palmae. CO4: Describe plant anatomy in relation to taxonomy CO5: Demonstrate qualitative Tests for Phenols and Flavonoids. CO6: Acquaint themselves with the technique of preparing Herbarium, Wet Preservation of plant material and Chromatography. CO7: Demonstrate the technique of Horizontal as well as 	
USBOP3 (01) Plant	Vertical Gel Electrophoresis	
Diversity	On the completion of the course the student would be able to:	
Diversity	CO1: Identify and understand the morphological and anatomical characteristics of <i>Sargassum</i> and describe the range of thallus in brown algae CO2: Identify and demonstrate an understanding of morphology, gametophyte-sporophyte differences of bryophytes using <i>Anthoceros</i> and <i>Funaria</i> as specimens.	

	CO3: Identify, classify and describe the characteristics of	
	Families Leguminosae, Asteraceae, Amaranthaceae and	
	Palmae.	
	CO4: Describe plant anatomy in relation to taxonomy	
	CO5: Demonstrate qualitative Tests for Phenols and	
	Flavonoids.	
	CO6: Acquaint themselves with the technique of	
	preparing Herbarium, Wet Preservation of plant material	
	and Chromatography.	
	CO7: Demonstrate the technique of Horizontal as well as	
	Vertical Gel Electrophoresis	
USBOP4 (01) Plant	On the completion of the course the student would be	
Diversity	able to:	
	CO1: Describe parasitic fungi, using <i>Erysiphe</i> and	
	<i>Xylaria</i> as specimens and identify and describe Powdery	
	Mildew and Late Blight disease.	
	CO2: Describe the morphological and microscopic	
	characteristics of Lichens	
	CO3: Identify and describe the morphological and	
	anatomical characteristics of <i>Selaginella</i>	
	CO4: Describe the anatomical characteristics of <i>Rhynia</i>	
	using permanent slides	
	CO5: Identify and describe the morphological and anatomical characteristics of <i>Pinus</i>	
	CO6: Describe the anatomical characteristics of	
	Cordaites using permanent slides	
USBOP3 (02) Form	On the completion of the course the student would be	
and Function-II	able to:	
unu i uncuon-11	CO1: Describe the structure and functioning of cell	
	organelles using photomicrographs.	
	CO2: Acquaint themselves with the technique of	
	quantitatively estimating DNA and RNA from plant	
	material. CO3: Describe inheritance patterns with	

	reference to plastid inheritance.	
	CO4: Identify and describe laggards and ring	
	chromosomes from photomicrographs.	
	CO5: Learn the technique of squash and smear slide	
	preparations, essential for understanding the stages seen	
	in mitosis and meiosis.	
	CO6: Understand the concepts Sanger sequencing and	
	determination of amino acid sequence from m-RNA	
	strand in prokaryotes and eukaryotes	
USBOP4 (02) Form	On the completion of the course the student would be	
and Function-II	able to:	
	CO1: Study normal secondary growth in dicotyledonous	
	root and stem through sectioning and staining.	
	CO2: Develop an understanding about the types of	
	mechanical tissue systems in underground and aerial	
	organs from different plants, using sectioning and	
	staining.	
	CO3: Understand the differences in the conducting tissues	
	as seen in Gymnosperms and Angiosperms using	
	maceration technique.	
	CO4: Study the different types of vascular bundles and lenticels, tyloses, growth rings, heart wood and sap wood	
	CO5: Learn the technique of performing experiments to	
	study Q10, NR activity and estimate proteins.	
	CO6: Understand the working and use of various	
	ecological instruments and study soil composition	
	CO7: Learn the technique of estimating organic matter in	
	soil	
	CO8: Learn the technique of studying vegetation by list	
	quadrant method	
USBOP3 Current	On the completion of the course the student would be	
Trends in Plant	able to:	

Sciences-I	CO1: Describe the macroscopic and microscopic	
	characters of <i>Saraca asoca</i> , <i>Phyllanthus amarus</i> and	
	Bacopa monnieri	
	CO2: Understand the biodiversity by visiting a Botanical	
	Garden.	
	CO3: Learn about the sources of fibres, spices and	
	condiments.	
	CO4: Acquaint the knowledge regarding the preparation	
	of herbal cosmetics.	
	CO5: Describe the method of estimation of crude fibre	
	from cereals and their products.	
	CO6: Demonstrate the method of preparation and	
	evaluation of probiotic food.	
	CO7: Understand the methods of evaluating nutraceutical	
	value of Mushrooms/Wheat germ	
USBOP4 Current	On the completion of the course the student would be	
Trends in Plant	able to:	
Sciences-I	CO1: Know and understand the different plants used in	
	various garden locations.	
	CO2: Demonstrate the method of preparing garden plans	
	for formal and informal gardens, bottle and dish gardens.	
	CO3: Acquaint themselves with the knowledge regarding	
	different sterilization techniques.	
	CO4: Demonstrate the technique of seed sterilization,	
	callus induction and regeneration of plantlets from callus.	
	CO5: Describe various cloning vectors.	
	CO6: Understand the concepts of Chi-Square test and	
	Coefficient of Correlation.	
	CO7: Learn and practice using search engines of google, ENTREZ and BLAST	
	ENTKEZ AND BLAST	

PROGRAMME	COURSE OUTCOME	PROGRAM SPECIFIC OUTCOME
-----------	----------------	--------------------------

AND COURSE				
T.Y.B.Sc BOTANY				
USBO501 Plant	The students would be able :	PSO 1: To recognize and identify major groups		
Diversity III	• To gain knowledge about microbial diversity and	of non-vascular and vascular plants and their		
	techniques for culturing and visualization.	phylogenetic relationships.		
	• To understand the salient features of three major groups	To understand the phylogeny of plants and study		
	of algae, their life cycle patterns with a suitable example;	various systems of classification.		
	to be able to identify them.			
	• To learn the general characteristics and classification of	PSO 2: To explore the morphological,		
	two major groups of fungi along with life cycles of each	anatomical, embryological details as well as		
	group; to be able to identify them.	economic importance of algae, fungi, bryophytes,		
	• To understand the scope and importance of Plant	pteridophytes, gymnosperms and angiosperms.		
	Pathology and apply the concepts of various control			
	measures of commonly widespread plant diseases.	PSO 3: To understand physiological processes		
USBO502 Plant	The students would be able :	and adaptations of plants. To provide knowledge		
Diversity IV	• To acquire knowledge of different fossil forms and	about environmental factors and natural		
	understand their role in evolution.	resources and their importance in sustainable		
	• To provide plant description, describe the	development.		
	morphological and reproductive structures of seven	DCO 4. To be able to some set about about all		
	families and also identify and classify according to Bentham and Hooker's system.	PSO 4: To be able to carry out phytochemical		
	• To gain proficiency in the use of keys and identification	analysis of plant extracts and application of the isolated compounds for treatment of diseases.		
	manuals for identifying any unknown plants to species	isolated compounds for treatment of diseases.		
	level.	PSO 5: To be able to deal with all microbes and		
	• To relate anomalies in internal stem structure with	the technologies for their effective uses in		
	function and appreciate the salient features of the root	industry and mitigation of environmental		
	stem transition zone.	concerns.		
	• To get exposure to pollen study and learn to apply it in			
	various fields.	PSO 6: To explain how current medicinal		
USBO503 Forms	The students would be able :	practices are often based on indigenous plant		
and Functions III	• To acquire knowledge about two important organelles	knowledge and to get introduced to different		
	and molecular mechanisms of translation	perspectives on treating ailments according to		
	• To understand water relations of plants, inorganic and	ethnomedicinal principles.		

USBO504 Current	 organic solute transport, and apply the knowledge to manage mineral nutrition and survival in challenging abiotic stresses. To understand succession in plant communities and study remediation technologies in order to apply knowledge acquired for cleanup of polluted sites. To get exposure to principles and techniques of plant tissue culture and apply these studies for improving agriculture and horticulture and to become an entrepreneur The students would be able : 	 PSO 7: To understand patterns of heredity and variation among individuals, species and populations and apply principles for improvement of quality and yield. PSO 8: To be able to apply statistical tools to gain insights into significantly different data from different sources.
trends in plant sciences II	 To get exposure to the technique of mushroom cultivation and explore the possibility of entrepreneurship in the same. To learn ethnobotanical principles, applications and utilize indigenous plant knowledge for the cure of common human diseases and improvement of agriculture. To gain knowledge about the latest molecular biology techniques for isolation and characterization of genes. To learn principles and application of commonly used techniques in instrumentation. To gain proficiency in the monograph study and pharmacognostic analysis of six medicinal plants 	PSO 9: To acquire recently published knowledge in molecular biology, such as rDNA technology; PTC and bioinformatics and their applications.
USBO601 Plant Diversity III	 The students would be able : To identify, describe and study in detail the life cycles of three Bryophytes. To and study in detail classification and general characters of three classes of Pteridophytes and identify as well as describe the life cycles of one example from each class. To study evolutionary aspects and economic utilization of Bryophytes and Pteridophytes. 	

	• To identify, describe and study in detail the life cycles	
	of three Gymnosperms.	
USBO602 Plant	The students would be able :	
Diversity IV	• To study contribution of Botanical gardens, BSI to	
	Angiosperm study and provide plant description, describe	
	the morphological and reproductive structures of seven families.	
	• To gain exposure to a phylognetic system of	
	classification.	
	• To gain insight into the anatomical adaptations of	
	different ecological plant groups.	
	• To understand development plant of male and female	
	gametophytes, embryonic structure and development.	
	• To understand the different aspects and importance of	
	Biodiversity and utilize	
	them for conservation of species so as to prevent further	
	loss or extinction of Biodiversity and preserve the	
	existing for future generations.	
USBO603 Forms	The students would be able :	
and Functions III	• To study various plant bimolecular structures and	
	appreciate the structures, role, functions and applications	
	of enzymes.	
	• To gain insight into the Nitrogen and plant hormone	
	metabolism with applications of the same in agriculture	
	and horticulture.	
	• To understand principles of genetic mapping, mutations	
	and solve problems based on them, gain knowledge of	
	various metabolic disorders and their implications.	
	• To generate and test hypotheses, make observations,	
	collect data, analyze and interpret results, derive	
	conclusions, and evaluate their significance within a	
	broad scientific context, using suitable statistical	
	techniques.	

	The students would be able :	
USBO604 IV	• To gain insight into recent molecular biology techniques	
Current Trends in	for DNA analysis and amplification and Bar coding	
plant Sciences II	techniques and applications therein.	
	• To understand and apply tools of Bioinformatics for	
	data retrieval and phylogenetic analysis.	
	• To learn about the sources of economically important	
	plants in the field of fats and oils and apply it for	
	extraction, dealing with entrepreneurship in the field.	
	• To gain knowledge and proficiency in preservation of	
	post harvest produce and explore the possibility of	
	entrepreneurship in the field	