Department: Computer Science

Programme: B.Sc. Computer Science

Programme Outcomes:

- 1. Students build strong foundation of Computer science.
 - a. Develops fundamental skills for solving computational problems.
 - b. The Mathematics & Statistics inculcate research oriented acumen.
- 2. Students are introduced with emerging trends in gradual way (from Fy to TY)
- 3. Students get well groomed for the challenges of ICT industry.
- 4. Students will develop capabilities to design formulations of computing models and its applications in diverse areas.
- 5. Course like Android Developer Fundamentals as a skill enhancement catering to modern day needs of Mobile platforms and applications.
- 6. Students will develop understanding of concepts and techniques for data management along with concepts of database at advance level.
- 7. Students will learn maths subjects like Combinatorics and Graph Theory & Linear Algebra. Graph theory is rapidly moving into the mainstream mainly because of its applications in diverse fields which include can further open new opportunities in the areas of genomics, communications networks and coding theory, algorithms and computations and operations research.
- Students will be introduced with concepts Physical Computing and IoT programming will definitely open future area as Embedded Engineer, involvement in IoT projects, Robotics and many more.
- Students will gain knowledge about Data Management and Machine Intelligence specific subject such as Data Science, Information Retrieval, Cloud Computing and Game Programming etc.
- 10. Finally programme develop a student as part of theoretically strong, innovatively skilled and ethically responsible generation of computer science professionals.
- 11. Students will get career opportunity in various fields such as software developer, web developer, software tester, game programmer, data analyst, network administrator etc.

Class: FYCS Semester: I

Course: USCS101 Computer Organization and Design (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Unit	Syllabus Computer Abstractions and Technology: Basic structure and operation of a computer, functional units and their interaction. Representation of numbers and characters. Computer Number System: Binary , Octal, Hexadecimal Conversions & arithmetic. Logic circuits and functions: Basic logic gates and functions: Basic logic circuits and functions. Minimization with Karnaugh maps. Synthesis of logic functions with and- or-not gates, nand gates, nor gates. Fan- in and fan-out requirements; tristate buffers. Half adder, full adder, ripple carry adder.	Outcomes Students understood basic hardware and functional units of computers. Students learned the number systems of computers and their conversions. Students learned to design various digital circuits using logic gates.
	(Flip flops) Gated S-R and D latches, edge-triggered D latch. Shift registers and registers. Decoders, multiplexers.Sequential circuits and functions: State diagram and state table; finite state machines and their synthesis.	

Π	Instruction set architectures: Memory organization, addressing and operations; word size, big-endian and little- endian arrangements. Instructions, sequencing. Instruction sets for RISC and CISC (examples Altera NIOS II and Freescale ColdFire). Operand addressing modes; pointers; indexing for arrays. Machine language, assembly language, assembler directives. Function calls, processor runtime stack, stack frame. Types of machine instructions: arithmetic, logic, shift, etc. Instruction sets, RISC and CISC examples.	Students understood types of processor instructions. Students learned all basic concepts like memory organization, stacks, addressing modes, subroutines, compilers, assemblers etc which will be helpful to them while learning programming languages.
Π	Basic Processor Unit: Main components of a processor: registers and register files, ALU, control unit, instruction fetch unit, interfaces to instruction and data memories. Datapath. Instruction fetch and execute; executing arithmetic/logic, memory access and branch instructions; hardwired and micro programmed control for RISC and CISC. Basic I/O: Accessing I/O devices, data transfers between processor and I/O devices. Interrupts and exceptions: interrupt requests and processing.	Students learned in brief components of the processor. Students understood the data flow among the various components of the processor and how the processor executes various instructions. Students understood how the data is being transferred to and from input/output devices and the processor. They also understood what is interrupt and how the processor manages it.

Programming with Python- I (Credits : 2 ectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Reasons for Python as the learner's first	1. Students understood the
	programming language. Introduction to the	concepts of programming
	IDLE interpreter (shell) and its documentation.	before actually starting to write
	Expression evaluation: similarities and	programs.
	differences compared to a calculator;	2. Learned to apply problem
	expressions and operators of types int, float,	solving techniques using
	boolean. Built-in function type. Operator	syntactically simple Python
	precedence.	language.
	Enumeration of simple and compound	3. Students get well versed
	statements. The expression statement. The	with python working
	assert statement, whose operand is a boolean	environment (shell & IDLE).
	expression (values true or false). The	4. Learned to find help about
	names to values (type is associated with data	commands/ statements with in
	and not with names); automatic and implicit	IDLE/Snell.
	declaration of variable names with the	5. Got knowledge about
	assignment statement: assigning the	Library & user defined
	valueNone to a name. The del (delete)	Library & user defined
	statement. Input/output with print and input	
	functions. A statement list (semicolon-	
	separated list of simple statements on a single	
	line) as a single interpreter command. The	
	import statement for already-defined functions	
	and constants. The augmented assignment	
	statement. The built-inhelp() function.	
	Interactive and script modes of IDLE, running	
	The compound statement def to define	
	functions: the role of indentation for delimiting	
	the body of a compound statement; calling a	
	previously defined function. Compound data	
	types str, tuple and list (enclosed in quotes,	
	parentheses and brackets, respectively).	
	types. Strings and tuples are immutable, lists	
	are mutable. Built-in functions min, max, sum.	
	Interactive solution of model problems, (e.g.,	
	finding the square root of a number or zero of	
	a function), by repeatedly executing the body of a loop (where the body is a statement list)	
II	User defined function def keyword	1. Students got familiar with the
	Advantages of functions function	basic constructs of programming
	parameters, formal parameters, actual	such as data, operations,
	parameters, global and local variables.	conditions, loops, functions etc.
		2. Learned about compound data

	The range function, the iterative for statement.	types & their use in applications.
	The conditional statements if, if-else, if-elif-	
	else. The iterative statements while, while-else,	
	for-else. The continue statement to skip over	
	one iteration of a loop, the break statement to	
	exit the loop. Nested compound statements.	
	Dictionaries: concept of key-value pairs,	
	techniques to create, update and delete	
	dictionary items. Problem-solving using	
	compound types and statements.	
III	Anonymous functions. List comprehensions	1. Students got better
	with variety of examples. Gentle introduction	understanding of advanced
	to object-oriented programming; using the	compound data types.
	built-in dir() function, enumerate the methods	2. Student learned to define
	of strings, tuples, lists, dictionaries. Using	objects.
	these methods for problem-solving with	3. They tried to handle their own
	compound types.	objects in program.
		4. Got idea about object behavior.

Course: USCS103 Free and Open-source Software (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Introduction Introduction: Open Source, Free	1. Students got a good working
	Software, Free Software vs. Open Source	knowledge of Open Source
	software, Public Domain Software, FOSS	ecosystem, its use, impact and
	does not mean no cost. History: BSD, The	Importance.
	Free Software Foundation and the GNU Project Methodologies Open Source History	2. Various types of software's
	Initiatives. Principle and methodologies.	learned by students.
	Philosophy : Software Freedom, Open Source	
	Development Model Licenses and Patents:	
	What Is A License, Important FOSS Licenses	
	(Apache, BSD, GPL, LGPL), copyrights and convilents Patents Economics of EOSS · Zero	
	Marginal Cost, Income-generation	
	opportunities, Problems with traditional	
	commercial software, Internationalization	
	Social Impact Open source vs. closed source,	
	Open source government, Open source ethics.	
	technology. Shared software. Shared source.	
	Open Source in Government.	
II	Case Studies Example Projects: Apache web	1.Students got a platform to
	server, GNU/Linux, Android, Mozilla	present their work as part of the
	GDB github Open Office Study	various sites.
	Understanding the developmental models,	2. Students learned about Open
	licensings, mode of funding,commercial/non-	Source methodologies and
	commercial use. Open Source Hardware,	ecosystem.
	Open source media Collaboration	3 Students developed their own
	Community and Communication Contributing	site.
	to Open Source Projects Introduction to github,	
	interacting with the community on github,	
	Communication and efiquette, testing open	
	code. Introduction to wikipedia, contributing to	
	Wikipedia Or contributing to any prominent	
	open source project of student's choice.	
	Starting and Maintaining own Open Source	
Ш	Understanding Open Source Ecosystem Open	1 Students gain knowledge of
	Source Operating Systems: GNU/Linux,	various technologies.
	Android, Free BSD, Open Solaris. Open	
	Source Hardware, Virtualization	2. Students gain knowledge of
	Docker Development tools IDFs debuggers	open source databases.
	Programming languages, LAMP, Open	
	Source database technologies	

Database Systems (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes		
Ι	Introduction to DBMS – Database, DBMS	1. Students understood how to		
	– Definition, Overview of DBMS,	evaluate business information		
	Advantages of DBMS, Levels of abstraction,	problem and find the requirements		
	Data independence, DBMS Architecture	of a problem in terms of data.		
	Data models - Client/Server Architecture,			
	Object Based Logical Model, Record Based	2. Student got familiar with the		
	Logical Model (relational, hierarchical,	concepts of DBMS with respect to		
	network)	the relational model		
	Entity Relationship Model - Entities,			
	attributes, entity sets, relations, relationship	3. Students understood how to		
	sets, Additional constraints (key constraints,	specify the functional and data		
	participation constraints, weak entities,	requirements for a typical database		
	aggregation / generalization, Conceptual	application and also understood		
	Design using ER (entities VS attributes,	creation, manipulation and		
	Entity Vs relationship, binary Vs ternary,	querying of data in databases.		
	constraints beyond ER)			
	Relational data model– Domains,			
	attributes, Tuples and Relations, Relational			
	Model Notation, Characteristics of Relations,			
	Relational Constraints - primary key,			
	referential integrity, unique constraint, Null			
	constraint, Check constraint			
	ER to Table- Entity to Table, Relationship to			
	tables with and without key constraints.			
II	Schema refinement and Normal forms:	1. Students were able to design the		
	Functional dependencies, first, second, third,	database schema with the use of		
	and BCNF normal forms based on primary	appropriate data types for storage		
	keys, lossless join decomposition.	of data in database.		
	Relational Algebra operations (selection,			
	projection, set operations union, intersection,	2. Students learned the various		
	difference, cross product, Joins -conditional,	ways of creating database using		
	equi join and natural joins, division)	ddl, dml.		
	DDL Statements - Creating Databases,	2 Internal marking of more		
	Using Databases, datatypes, Creating Tables	3. Internal working of query,		
	(with integrity constraints – primary key,	optimization techniques now a		
	default, check, not null), Altering Tables,	query is evaluated using relational		
	Renaming Tables, Dropping Tables,	algeora.		
	Truncating Tables, Backing Up and			
	Restoring databases			
	DML Statements – Viewing the structure of			
	a table insert, update, delete, select all columns specific columns upique records			
	conditional select. in clause, between clause			
	limit, aggregate functions (count, min, max,			

	avg, sum), group by clause, having clause	
III	Functions – String Functions (concat, instr, left, right, mid, length, lcase/lower, ucase/upper, replace, strcmp, trim, ltrim,	1. Students will be able to create, manipulate, query and back up the databases.
	rtrim), Math Functions (abs, ceil, floor, mod, pow, sqrt, round, truncate) Date Functions (addate_datediff_day_month_year_bour	2. Students learned different types of functions.
	 (addate, datediff, day, month, year, hour, min, sec, now, reverse) Joining Tables – inner join, outer join (left outer, right outer, full outer) Subqueries – subqueries with IN, EXISTS, subqueries restrictions, Nested subqueries, ANY/ALL clause, correlated subqueries Database Protection: Security Issues, Threats to Databases, Security Mechanisms, Role of DBA, Discretionary Access Control (Concept) Views (creating, altering dropping, renaming and manipulating views) 	3. They also learned how to work with two tables, join a table, who is a dba.
	DCLStatements(theoretical)-creating/droppingusers,privilegesintroduction,granting/revokingprivileges,viewing privileges	

Course:	USCS105	Discrete	Mathematics	(Credits :	Lectures/Week: 3)
---------	----------------	----------	--------------------	------------	-------------------

		,
Unit	Syllabus	Outcomes
I	Recurrence Relations(a) Functions: Definition of function.Domain, co domain and the range of a function. Direct and inverse images.Injective, surjective and bijective	 Students were familiarize with mathematical structures that are discrete. Students learned about sets and functions sets and functions
	functions. Composite and inverse functions.	relations and different counting
	 (b) Relations: Definition and examples. Properties of relations, Partial Ordering sets, Linear Ordering Hasse Daigrams, Maximum and Minimum elements, Lattices 	principles.3. These concepts are useful to study or describe objects or problems in computer algorithms and programming languages.
	Recurrence Relations: Definition of recurrence relations, Formulating recurrence relations, solving recurrence relations- Back tracking method, Linear homogeneous recurrence relations with constant coefficients. Solving linear homogeneous recurrence relations with constant coefficients of degree two when characteristic equation has distinct roots and only one root, Particular	

	solutions of non linear homogeneous	
	recurrence relation, Solution of recurrence	
	relation by the method of generation	
	functions, Applications- Formulate and solve	
	recurrence relation for Fibonacci numbers,	
	Tower of Hanoi, Intersection of lines in a	
П	plane, Sorting Algorithms.	Provida basia knowladga about
11	Counting Principles, Languages and Finite	models of automata theory and the
	State Machine	corresponding formal languages.
	(a) Permutations and Combinations:	••••••••••••••••••••••••••••••••••••••
	Partition and Distribution of objects,	
	Permutation with distinct and indistinct	
	objects, Binomial numbers, Combination	
	with identities: Pascal Identity,	
	Vandermonde's Identity, Pascal triangle,	
	Binomial theorem, Combination with	
	indistinct objects.	
	(b) Counting Principles: Sum and Product	
	Rules, Two-way counting, Tree diagram	
	for solving counting problems,	
	Pigeonhole Principle (without proof);	
	Simple examples, Inclusion Exclusion	
	Principle (Sieve formula) (Without proof).	
	Languages, Grammars and Machines:	
	Languages, regular Expression and Regular	
	languages, Finite state Automata, grammars,	
	Finite state machines, Gödel numbers, Turing	
	machines	
	indefinites.	
III	Graphs and Trees	Students understood concept of
III	Graphs and Trees (a) Graphs : Definition and elementary	Students understood concept of graphs and trees, which are widely
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, 	Students understood concept of graphs and trees, which are widely used in software.
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, 	Students understood concept of graphs and trees, which are widely used in software.
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , 	Students understood concept of graphs and trees, which are widely used in software.
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, 	Students understood concept of graphs and trees, which are widely used in software.
ш	Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms -	Students understood concept of graphs and trees, which are widely used in software.
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a 	Students understood concept of graphs and trees, which are widely used in software.
III	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth- 	Students understood concept of graphs and trees, which are widely used in software.
ш	Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth- First search.	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees. 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees, representing binary trees in memory 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees, representing binary trees in memory, traversing binary trees binary search tree 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees, representing binary trees in memory, traversing binary trees, binary search tree, Algorithms for searching and inserting in 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees, representing binary trees in memory, traversing binary trees, binary search tree, Algorithms for searching and inserting in binary search trees. 	Students understood concept of graphs and trees, which are widely used in software.
ш	 Graphs and Trees (a) Graphs : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm- shortest path , Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search. (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, complete and extended binary trees, representing binary trees, binary search tree, Algorithms for searching and inserting in binary search trees, Algorithms for searching and inserting in a binary search tree 	Students understood concept of graphs and trees, which are widely used in software.

Course: USCS106 Subject: Descriptive Statistics and Introduction to Probability

(Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Data Presentation Data types : attribute,	Enable Students to know descriptive
	variable, discrete and continuous	statistical concepts.
	variable Data presentation : frequency	
	distribution, histogram o give, curves,	
	stem and leaf display Data Aggregation	
	Measures of Central tendency: Mean,	
	Median, mode for raw data, discrete,	
	grouped frequency distribution.	
	Measures dispersion: Variance,	
	standard deviation, coefficient of	
	variation for raw data, discrete and	
	grouped frequency distribution,	
	quartiles, quantiles Real life examples	
	(15 L)	
II	Moments: raw moments, central	Students will be able to understand the
	moments, relation between raw and	relation and future prediction between
	central moments Measures of Skewness	two entities which are related with each
	and Kurtosis: based on moments,	other
	quartiles, relation between mean,	
	median, mode for symmetric,	
	asymmetric frequency curve.	
	Correlation and Regression: bivariate	
	data, scatter plot, correlation, nonsense	
	of correlation independence. Lincor	
	of correlation, independence. Linear	
	using least square regression	
	coefficient of determination properties	
	of regression coefficients (only	
	statement)	
III	Probability · Random experiment	Students will be able to Develop
111	sample space events types and	problem-solving techniques needed to
	operations of events Probability	accurately calculate probabilities
	definition classical axiomatic	Apply problem-solving techniques to
	Elementary Theorems of probability	solving real-world events.
	(without proof) $-0 \le P(A) \le 1$ $-P(A)$	
	$(\Box B) = P(A) + P(B) - P(A \cap B) - P$	
	$(A') = 1 - P(A) - P(A) < P(B) \text{ if } A \subset B$	
	Conditional probability 'Bayes'	
	theorem, independence, Examples on	
	Probability	

Course:	USCS107	Soft	Skills	Development	(Credits	:	2
Lectures/	Week: 3)						

Unit	Syllabus	Outcomes
Unit	SyllabusIntroduction to Soft Skills and Hard SkillsPersonalityDevelopment:Yourself,PositiveThinking,Johari'sWindow,CommunicationSkills,Non-verbal Communication,Physical FitnessEmotionalIntelligence:MeaningandDefinition,NeedNeedforEmotionalIntelligenceQuotientversusEmotionalIntelligenceQuotient,Components of EmotionalCompetencies of EmotionalIntelligence,Skills to Develop EmotionalIntelligenceEtiquetteandMannerism:Introduction,ProfessionalEtiquette,TechnologyEtiquetteCommunicationToday:Significance ofCommunication,VitalityOftheCommunication,VitalityVitalityofListening,FundamentalsOfGoodListening,NatureOfNon-VerbalCommunication,NeedforInterculturalCommunication,NeedforIntercultural	 Outcomes To know about various aspects of soft skills and learn ways to develop personality The students learned the concept of positive thinking and the tool of assessing their personality. The students understood the EI concept and as well its importance. Understood the EI concept and type of communication, behaviour in personal and professional environment. The student is able to understand different modes of communication in today's digital world.
II	WorldAcademic SkillsEmployment Communication:Introduction, Resume, Curriculum Vitae,Scannable Resume, Curriculum Vitae,Scannable Resume, Developing anImpressive Resume, Formats of Resume, JobApplication or Cover LetterProfessional Presentation: Nature of OralPresentation, Planning a Presentation,Preparing the Presentation, Delivering thePresentationJob Interviews: Introduction, Importance ofResume, Definition of Interview,Background Information, Types ofInterviews, Preparatory Steps for JobInterviews, Interview Skill Tips, Changes inthe Interview Process, FAQ DuringInterviewsGroup Discussion: Introduction,Ambience/Seating Arrangement for GroupDiscussion, Importance of Group	 Has provided insight into much needed technical and non- technical qualities in career planning. Understood various issues in personal and professional communication and learned to overcome them. The student is able to know resume, understand its various types and difference between CV & Resume. The students learned how to prepare presentations and deliver them professionally.

Discussions, Difference between Group Discussion, Panel Discussion and Debate, Traits, Types of Group Discussions, topic based and Case based Group Discussion, Individual Traits	making interview effective and also has help them to participate in GD.
 III Professional Skills Creativity at Workplace: Introduction, Current Workplaces, Creativity, Motivation, Nurturing Hobbies at Work, The Six Thinking Hat Method Ethical Values: Ethics and Society, Theories of Ethics, Correlation between Values and Behavior, Nurturing Ethics, Importance of Work Ethics, Problems in the Absence of Work Ethics Capacity Building: Learn, Unlearn and Relearn: Capacity Building, Elements of Capacity Building, Zones of Learning, Ideas for Learning, Strategies for Capacity Building Leadership and Team Building: Leader and Leadership, Leadership Traits, Culture and Leadership, Leadership Styles and Trends, Team Building, Types of Teams, Decision Making and Negotiation: Introduction to Decision Making, Steps for Decision Making, Decision Making Techniques, Negotiation Fundamentals, Negotiation Styles, Major Negotiation Concepts Stress and Time Management: Stress, Sources of Stress, Ways to Cope with Stress 	 Learned about Leadership, team building, decision making and stress management. Developed professional, social and academic skills to harness hidden strengths, capabilities and knowledge equip them to excel in real work environment and corporate life. The students learned about various concepts like creativity, motivation, capacity building. The students are able to learn leadership roles and team building. The students learned the decision making techniques, negotiation styles and ways to handle stress.

Class: FYCS Semester: II

Course: USCS201 Programming with C (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes		
Ι	Structure of C program: Header and body, Use of	1. Students were		
	comments. Interpreters vs compilers, Python vs C.	able to write,		
	Compilation of a program. Formatted I/O: printf(),	compile and debug		
	scanf().	programs in C		
		language.		
	Data: Variables, Constants, data types like: int,	2. Students were		
	float char, double and void, short and long size	able to use		
	qualifiers, signed and unsigned qualifiers. Compare	different data		
	with datatypes in Python	types in a		
	Compare static typing in C vs dynamic typing in	program		
	Python	3 Students were		
	- Julion	3. Students were		
	Variables: Declaring variables, scope of the	logics which will		
	variables according to block, hierarchy of data	help them to		
	types Compare explicit declarations in C with	create programs,		
	implicit declarations in Python	applications in C.		
	implier decidations in Lython.	Also by learning		
	Types of operators: Arithmetic relational	the basic		
	logical compound assignment increment and	programming		
	docrament conditional or ternary hitwise and	constructs they		
	common analyters. Dressdenes and order of	can easily switch		
	comma operators. Precedence and order of	over to any other		
	evaluation, statements and Expressions.	language in future.		
	Automatic and explicit type conversion.			
	Iterations : Control statements for decision making:			
	(i) Branching: if statement, else if statement, (does			
	the writer mean if-else or nested ifs)switch			
	statement. (ii) Looping: while loop, do while, for			
	loop. (iii) Jump statements: break, continue and			
	goto.			
II	Arrays: (One and two dimensional), declaring	1. Students were		
	array variables, initialization of arrays, accessing	able to design		
	array elements. Compare array types of C with list	programs		
	and tuple types of Python.	involving decision		
		structures, loops		
	Data Input and Output functions: Character I/O	2 Steelerst		
	format: getch(), getche(), getchar(), getc(), gets(),	2. Students were		
	putchar(), putc(), puts().	how to understand		
		functions and How		
	Manipulating Strings: Declaring and initializing	to handle stings in		
	String variables, Character and string handling	C.		

	functions. Compare with Python strings.		
	Functions : Function declaration, function definition, Global and local variables, return statement, Calling a function by passing values. Recursion : Definition, Recursive functions.		
III	 Pointer: Fundamentals, Pointer variables, Referencing and de-referencing, Pointer Arithmetic, Using Pointers with Arrays, Using Pointers with Strings, Array of Pointers, Pointers as function arguments, Functions returning pointers. Dynamic Memory Allocation: malloc(), calloc(), realloc(), free() and sizeof operator. Compare with automatic garbage collection in Python. Structure: Declaration of structure, reading and assignment of structure variables, Array of structures, arrays within structures, structures within structures. Compare C structures with Python tuples. Unions: Defining and working with unions. File handling: Different types of files like text and binary, Different types of functions: fopen(), fclose(), fgetc(), fputc(), fgets(), fputs(), fscanf(), fprintf(), getw(), putw(), fread(), fwrite(), fseek(). 	1. 2. 3.	Studentswereable to explain theable to explain thedifferencebetween call byvalue and call byreference.Studentsgotfamiliar withthedynamicsofmemorybytheuse of pointers.Students were abletousedifferentdata structures andcreate/updatebasic data files.

Course: USCS202 Programming with Python– II

Unit	Syllabus	Outcomes
I	Python File Input-Output: Opening and closing files, various types of file modes, reading and writing to files, manipulating	1. Student learned about file management & other operations.
	directories. Iterables, iterators and their problem solving applications. Regular Expressions: Concept of regular expression, various types of regular expressions,	2 Students studied pattern search operation, required in various applications.
	using match function.	
II	Exception handling: What is an exception, various keywords to handle exceptions such try, catch, except, else, finally, raise.	1. Student learned importance of error free code.
	GUI Programming in Python (using Tkinter/wxPython/Qt)	2. Student studied different types of error

	What is GUI, Advantages of GUI, Introduction to	possibilities.
	GUI library. Layout management, events and bindings, fonts, colours, drawing on canvas (line, oval rectangle etc.) Widgets such as frame label	3. Also learned to handle such situations.
	button, checkbutton, entry, listbox, message, radiobutton, text, spinbox etc GUI event handling - Events and bindings, fonts, colours, drawing on canvas (line, oval, rectangle, etc.)	4 Student understood need of GUI. Got Idea of designing GUI. Learned use of various widgets.
III	Database connectivity in Python : Installing mysql connector, accessing connector module module, using connect, cursor, execute & close	1. They learned how use of database helps in python.
	functions, reading single & multiple results of query execution, executing different types of statements, executing transactions, understanding	2. Learned to incorporate database in python program.
	exceptions in database connectivity. Network connectivity : Socket module, creating server-client programs, sending email, reading from URI	3. Understood basic networking concepts.
		4 Got familiar with web applications & server side programming.

Linux (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Introduction History of Linux	1.students will get good working
	Philosophy. Community. Terminology.	knowledge of Linux, from both a
	Distributions. Linux kernel vs	graphical and command line
	distribution. Why learn Linux?	perspective, allowing them to easily
	Importance of Linux in software	use any Linux distribution
	ecosystem: web servers,	
	supercomputers, mobile, servers.	2. students will introduced to
	Installation Installation methods, Hands	various tools and techniques of
	on Installation using CD/DVD or USB	system administrators and linux
	drive. Linux Structure Linux	programmers.
	Architecture, Filesystem basics, The	
	boot process, init scripts, runlevels,	3. Students will be introduced to
	shutdown process, Very basic	types of processes.
	introductions to Linux processes,	
	Packaging methods: rpm/deb,	
	Graphical Vs Command line.	
II	Graphical Desktop Session	1. It is designed for computer
	Management, Basic Desktop	students who have limited or no
	Operations, Network Management,	previous exposure to Linux.
	Installing and Updating Software, Text	
	editors: gedit, vi, vim, emacs, Graphics	2. students will be exposed to
	editors, Multimedia applications.	installation of software's in linux.
	Command Line Command line mode	
	options, Shells, Basic Commands,	
	General Purpose Utilities, Installing	
	Software, User management,	
	Environment variables, Command	
	aliases. Linux Documentation man	
	pages, GNU info, help command, More	
	documentation sources File Operations	
	Filesystem, Filesystem architecture, File	
	types, File attributes, working with	
TT	files, Backup, compression	1 Stadaut shall be able to gue and
111	Security Understanding Linux Security,	1. Student shall be able to progress
	Uses of root, sudo command, working	Administrator using the acquired
	authentication Understanding ash	skill sot
	Networking Basic introduction to	SKIII Set.
	Networking Network protocols: http	2 Students will be exposed to
	ftp etc IP address DNS Browsers	networking commands
	Transferring files ssh telnet ning	networking commands
	traceroute route hostname networking	
	GUI Basic Shell Scripting Features and	
	capabilities Svntax Constructs	
	Modifying files. Sed awk command	
	File manipulation utilities Dealing with	
	large files and Text String	
	manipulation. Boolean expressions. File	

tests,	Case,	Debugging,	Regular
express	sions.		

Course: USCS204 Data Structures (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Abstract Data Types: Introduction, The	1. Students explored and
	Date Abstract Data Type, Bags, Iterators.	understood the concepts
	Application	of Data Structures and its
	Arrays: Array Structure, Python List, Two	significance in
	Dimensional Arrays, Matrix Abstract Data	programming.
	Type, Application	2. Got holistic approach
	Sets and Maps: Sets-Set ADT, Selecting	to design, use and
	Data Structure, List based Implementation,	implementation of
	Maps-Map ADT, List Based	abstract data types.
	Implementation, Multi-Dimensional Arrays-	3. Understand the
	Multi-Array ADT, Implementing	commonly used data
	Multiarrays, Application	structures and various
	Algorithm Analysis: Complexity Analysis-	forms of its
	Big-O Notation, Evaluating Python Code,	implementation for
	Evaluating Python List, Amortized Cost,	different applications
	Evaluating Set AD1, Application	using Python.
	Searching and Sorting: Searching-Linear	Learn about various
	Search, Binary Search, Sorting-Bubble,	approaches of searching
	Sorted Lists-Maintaining Sorted List	& sorting required in day
	Maintaining sorted Lists.	today tasks.
II	Linked Structures: Introduction, Singly	1. Developed Ability to
	Linked List-Traversing, Searching,	program various
	Prepending and Removing Nodes, Bag	applications using different
	ADT-Linked List Implementation.	uata structure in Fython.
	Comparing Implementations, Linked List	2. Learned about dynamic
	Iterators, More Ways to Build Kinked Lists,	memory management.
	Applications-Polynomials	
	Stacks: Stack ADT, Implementing Stacks-	3. Learned about stack &
	Using Python List, Using Linked List, Stack	various day today work as
	Applications-Balanced Delimiters,	well in computer
	Evaluating Postfix Expressions	processing.
	Queues: Queue ADT, Implementing Queue-	
	Priority Queues Priority Queue ADT Bounded	
	and unbounded Priority Queues Advanced	
	Linked List: Doubly Linked Lists-Organization	
	and Operation, Circular Linked List-	
	Organization and Operation, Multi Lists	
111	Recursion: Recursive Functions, Properties of	1. Learned about recursion
	Recursion, Its working, Recursive Applications	in real life
	Hash Table: Introduction, Hashing-Linear	

Probing, Clustering, Rehashing, Separate	2. Studied tree ADT which
Chaining, Hash Functions	is common structure in
Advanced Sorting: Merge Sort, Quick Sort,	computers.
Radix Sort, Sorting Linked List	3. Understood use & need
Binary Trees: Tree Structure, Binary Tree-	of such structures.
Properties, Implementation and Traversals,	
Expression Trees, Heaps and Heapsort, Search	
Trees.	

Calculus (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	DERIVATIVES AND ITS	1. Student learned
	APPLICATIONS:	important concepts of
	Review of Functions, limit of a function,	Calculus.
	continuity of a function, derivative function.	
	Derivative In Graphing And Applications:	2. Got familiar with topics
	Analysis of Functions: Increase, Decrease,	of functions to partial
	Concavity, Relative Extrema; Graphing	derivatives of functions in
	Polynomials, Rational Functions,-Cusps and	a gradual and logical way.
	Vertical Tangents. Absolute Maxima and	
	Minima, Applied Maximum and Minimum	3. Students solve many
	Problems,	examples to a get compete
	Newton's Method	clarity and understanding
		of the topics covered.
П	INTEGRATION AND ITS	1. Students developed
	APPLICATIONS:	ability to appreciate real
	An Overview of the Area Problem, Indefinite	world applications which
	Integral, Definition of Area as a Limit; Sigma	uses these concepts.
	Notation, Definite Integral, Evaluating	
	Definite Integrals by Substitution, Area	
	Between Two Curves, Length of a Plane	
	Curve. Numerical Integration: Simpson's	
	Rule. Modeling with Differential Equations,	
	Separation of Variables, Slope Fields, Euler's	
	Method, First-	
	Order Differential Equations and Applications.	
III	PARTIAL DERIVATIVES AND ITS	1. Also developed Skill to
	APPLICATIONS: Experience of Two or More Veriables Limits and	formulate a problem
	Continuity Partial Derivatives Differentiability	through Mathematical
	Differentials, and Local Linearity, Chain Rule	modeling and simulation.
	Directional Derivatives and Gradients, Tangent	
	Planes and Normal, Vectors, Maxima and	
	Minima of Functions of Two Variables.	

Course: USCS206 Subject: Statistical Methods and Testing of Hypothesis (Credits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Standard distributions: random	It will focus on the random variable,
	variable; discrete, continuous,	mathematical expectation, and different types
	expectation and variance of a	of distributions, sampling theory and
	random variable, pmf, pdf, cdf,	estimation theory.
	reliability, Introduction and	
	properties without proof for	
	following distributions;	
	binomial, normal, chi-square, t,	
	F. Examples	
II	Hypothesis testing: one sided,	There are two possible outcomes: if the result
	two sided hypothesis, critical	confirms the hypothesis, then you've made a
	region, p-value, tests based on	measurement. If the result is contrary to the
	t, Normal and F, confidence	hypothesis, then you've made a discovery
	intervals. Analysis of variance :	
	one-way, two-way analysis of	
	variance	
III	Non-parametric tests: need of	1. Apply non-parametric techniques to
	non-parametric tests, sign test,	statistical inference situations in which the
	Wilicoxon's signed rank test,	normal-based statistics do not apply.
	run test, Kruskal-Walis tests.	2. Identify and use software appropriate for
	Post-hoc analysis of one-way	nonparametric methods.
	analysis of variance : Duncan's	
	test Chi-square test of	
	association	

USCS207

Green Technologies Ability Enhancement Course2

Unit	Syllabus	Outcomes
Ι	Green IT Overview: Introduction ,	1) Students are
	Green II Overview: Introduction , Environmental Concerns and Sustainable Development, Environmental Impacts of IT, Green I , Holistic Approach to Greening IT, Greening IT, Applying IT for Enhancing Environmental Sustainability, Green IT Standards and Eco-Labelling of IT , Enterprise Green IT Strategy, Green Washing, Green IT: Burden or Opportunity? Green Devices and Hardware: Introduction , Life Cycle of a Device or Hardware, Reuse, Recycle and Dispose Green Software: Introduction , Processor Power States , Energy-Saving Software Techniques, Evaluating and Measuring Software Impact to Platform Power Sustainable Software Development: Introduction, Current Practices, Sustainable Software, Software Sustainability Attributes, Software Sustainability Metrics, Sustainable Software Methodology, Defining Actions	 familiarized with the concept of Green Computing and Green IT infrastructure for making computing and information system environment sustainable. 2) Students are now aware about important concepts like 3R's of Green IT, Green Washing, Green IT strategy. 3) Students have learned various energy-saving software techniques, how to measure software impact to power, also various they are now known to various software sustainability attributes.
II	Green Data Centres: Data Centres and Associated Energy Challenges, Data Centre IT Infrastructure, Data Centre Facility Infrastructure: Implications for Energy Efficiency, IT Infrastructure Management, Green Data Centre MetricsGreen Data Centre MetricsGreen Data Storage: Introduction, Storage Media Power Characteristics, Energy Management Techniques for Hard Disks, System-Level Energy ManagementGreen Networks and Communications: Introduction, Objectives of Green Network Protocols, Green Network Protocols and StandardsEnterpriseGreen ITStrategies, Business Drivers of Green IT Strategy, Business Dimensions for Green IT Transformation,	 6) Students learned about that green IT can be achieved in and by hardware, software, network communication and data center operations. 7) The students have gained knowledge about optimizing software and hardware designs for development of Green IT Storage, Communication and Services. 8) The students have learned about various Green IT business dimensions, steps in developing Green IT

	Considerations in a Green IT Strategy, Steps in Developing a Green IT Strategy Metrics	strategy.
	and Measurements in Green Strategies.	
III	Sustainable Information Systems and Green Metrics: Introduction, Multilevel Sustainable Information, Sustainability Hierarchy Models, Product Level Information, Individual Level Information, Functional Level Information, Organizational Level Information, Measuring the Maturity of Sustainable ICT Enterprise Green IT Readiness: Introduction, Readiness and Capability, Development of the G-Readiness Framework, Measuring an Organization's G- Readiness Sustainable IT Services: Creating a Framework for Service Innovation: Introduction, Factors Driving the Development of Sustainable IT, Sustainable IT Services (SITS), SITS Strategic Framework Green Enterprises and the Role of IT: Introduction, Organizational and Enterprise Greening, Information Systems in Greening Enterprises, Greening the Enterprise: IT Usage and Hardware, Inter-organizational Enterprise Activities and Green Issues	 6) Understand the strategies, frameworks, processes and management of green IT. 7) To highlight useful approaches to embrace green IT initiatives. 8) Students have learned important concepts like Green IT Readiness Framework, SITS Strategic Framework, Greening information systems.

Class: SYCS

Semester:III

USCS301

Theory Computation

Unit	Syllabus	Outcomes
I	Automata Theory: Defining Automaton, Finite Automaton, Transitios and Its properties, Acceptability by Finite Automaton, Nondeterministic Finite State Machines, DFA and NDFA equivalence, Mealy and Moore Machines, Minimizing Automata. Formal Languges: Defining Grammar, Derivations, Languges generated by Grammar, Comsky Classification of Grammar and Languages, Recursive Enumerable Sets, Operations on Languages, Languages and Automata	 Students understood grammar, languages and other elements of modern language design. Also developed capabilities to design and develop formulations for computing models and identify its applications in diverse areas. Learn about Automata theory and its application in Language Design
Π	Regular Sets and Regular Grammar: Regular Grammar, Regular Expressions, Finite automata and Regular Expressions, Pumping Lemma and its Applications, Closure Properties, Regular Sets and Regular Grammar Context Free Languages: Context- free Languages, Derivation Tree, Ambiguity of Grammar, CFG simplification, Normal Forms, Pumping Lemma for CFG Pushdown Automata: Definitions, Acceptance by PDA, PDA and CFG	1. Learned about Turing Machines and Pushdown Automata.
III	Linear Bound Automata: The Linear Bound Automata Model, Linear Bound Automata and Languages. Turing Machines: Turing Machine Definition, Representations, Acceptability by Turing Machines, Designing and Description of Turing Machines, Turing Machine Construction, Variants of Turing Machine, Undecidability: The Church-Turing thesis, Universal Turing Machine, Halting Problem, Introduction to Unsolvable Problems	1. Understood Linear Bound Automata and its applications.

USCS30	2 Core JAVA	
Unit	Syllabus	Outcomes
Ι	The Java Language: Features of Java, Java programming format, Java Tokens, Java Statements, Java Data Types, Typecasting, Arrays OOPS: Introduction, Class, Object, Static Keywords, Constructors, this Key Word, Inheritance, super Key Word, Polymorphism (overloading and overriding), Abstraction, Encapsulation, Abstract Classes, Interfaces String Manipulations: String, String Buffer, String Tokenizer Packages: Introduction to predefined packages (java.lang, java.util, java.io, java.sql, java.swing), User Defined Packages, Access specifiers	 Revised Object oriented programming concepts using Java. Gain knowledge of input, its processing and getting suitable output.
Π	Exception Handling: Introduction, Pre- Defined Exceptions, Try-Catch-Finally, Throws, throw, User Defined Exception examples Multithreading: Thread Creations, Thread Life Cycle, Life Cycle Methods, Synchronization, Wait() notify() notify all() methods I/O Streams: Introduction, Byte- oriented streams, Character- oriented streams, File, Random access File, Serialization Networking: Introduction, Socket, Server socket, Client –Server Communication	 Students exposed to Networking package. Students introduced to multitasking concept. Students are abled to handle errors.
III	Wrapper Classes: Introduction, Byte, Short, Integer, Long, Float, Double, Character, Boolean classes Collection Framework: Introduction, util Package interfaces, List, Set, Map, List interface & its classes, Set interface & its classes, Map interface & its classes Inner Classes: Introduction, Member inner class, Static inner class, Local inner class, Anonymous inner class AWT: Introduction, Components, Event-Delegation-Model, Listeners, Layouts, Individual components Label, Button, CheckBox, Radio Button, Choice, List, Menu, Text Field, Text Area	Gain knowledge and implementation of AWT package.

Course: USCS303 Operating System (Credits : 02 Lectures/Week:03)

Unit	Syllabus	Outcor	nes
Ι	Introduction and Operating-Systems Structures: Definition of Operating system, Operating System's role, Operating-System Operations, Functions of Operating System, Computing Environments Operating-System Structures: Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls, Operating- System Structure Processes: Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. Threads: Overview, Multicore Programming, Multithreading Models	1. 2. 3.	Students understood operating system, its structures and functioning. Students understood the concepts of process. Students understood about threads.
Π	Process Synchronization: General structure of a typical process, race condition, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms (FCFS, SJF, SRTF, Priority, RR, Multilevel Queue Scheduling, Multilevel Feedback Queue Scheduling), Thread Scheduling Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock	1.	Students were able to develop and master understanding of algorithms used by operating systems for various purposes. Students learned about deadlock.
III	Main Memory: Background, Logical address space, Physical address space, MMU, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table Virtual Memory: Background, Demand Paging, Copy-on- Write, Page Replacement, Allocation of Frames, Thrashing Mass-Storage Structure: Overview, Disk Structure, Disk Scheduling, Disk Management File- System Interface: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing File-System Implementation: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management	1.	Student understood the memory allocation and disk utilization of operating system. Students learned about file management, disk management.

Course:	USCS304	Database Management Systems (Cre	edits : 2 Lectures/Week: 3)

Unit	Syllabus	Outcomes
Ι	Stored Procedures: Types and benefits of stored procedures, creating stored procedures, executing stored procedures, altering stored procedures, viewing stored procedures.	1. Students understood database management concepts, File management systems.
	Triggers: Concept of triggers, Implementing triggers – creating triggers, Insert, delete, and update triggers, nested triggers, viewing, deleting and modifying triggers, and enforcing data integrity through triggers.	2 Students understood need of stored procedures & role of triggers.
	Sequences: creating sequences, referencing, altering and dropping a sequence.	
	File Organization and Indexing: Cluster, Primary and secondary indexing, Index data structure: hash and Tree based indexing, Comparison of file organization: cost model, Heap files, sorted files, clustered files. Creating, dropping and maintaining indexes.	
Π	Fundamentals of PL/SQL: Defining variables and constants, PL/SQL expressions and comparisons: Logical Operators, Boolean Expressions, CASE Expressions Handling, Null Values in Comparisons and Conditional Statements, PL/SQL Datatypes: Number Types, Character Types, Boolean Type, Datetime and Interval Types.	Students learned about use of PL/SQL
	Overview of PL/SQL Control Structures: Conditional Control: IF and CASE Statements, IF- THEN Statement, IF-THEN-ELSE Statement, IFTHEN-ELSIF Statement, CASE Statement, Iterative Control: LOOP and EXIT Statements, WHILE-LOOP, FOR-LOOP, Sequential Control: GOTO and NULL Statements	
III	Transaction Management: ACID Properties, Serializability, Two-phase Commit Protocol, Concurrency Control, Lock Management, Lost Update Problem, Inconsistent Read Problem , Read-Write Locks, Deadlocks Handling, Two Phase Locking protocol. DCL Statements: Defining a transaction, Making Changes Permanent with COMMIT, Undoing Changes with ROLLBACK, Undoing Partial Changes with SAVEPOINT and ROLLBACK Crash Recovery: ARIES algorithm. The log based recovery, recovery related structures like transaction and dirty page table, Write-ahead log protocol, check points, recovery from a system crash, Redo and Undo phases.	Students understood concepts and implementations of transaction management and crash recovery

Course: USCS305 Combinatorics and	Graph Theory(Credits : 2 Lectures/Week: 3)
-----------------------------------	--

Unit	Syllabus	Outcomes
Ι	Introduction to Combinatorics: Enumeration,	Appreciate beauty of
	Combinatorics and Graph Theory/ Number	combinatorics and how
	Theory/Geometry and Optimization, Sudoku	combinatorial problems
	Puzzles. Strings, Sets, and Binomial Coefficients:	naturally arise in many
	Strings- A First Look, Combinations, Combinatorial,	settings.
	The Ubiquitous Nature of Binomial Coefficients,	
	The Binomial, Multinomial Coefficients. Induction:	
	Introduction, The Positive Integers are Well	
	Ordered, The Meaning of Statements, Binomial	
	Coefficients Revisited, Solving Combinatorial	
	Problems Recursively, Mathematical Induction, and	
	Inductive Definitions Proofs by Induction. Strong	
	induction	~
11	Graph Theory: Basic Notation and Terminology,	Students will be able to
	Multigraphs: Loops and Multiple Edges, Eulerian	apply theoretical knowl
	and Hamiltonian Graphs, Graph Coloring, Planar	edge acquired to solve
	Counting, Labeled Irees, A Digression into	realistic problems in real
	Complexity Theory. Applying Probability to	me.
	Combinatorics, Small Rainsey Numbers, Estimating	
	Theory Pamsey's Theorem The Probabilistic	
	Method	
Ш	Network Flows: Basic Notation and Terminology	Apply combinatorial
	Flows and Cuts. Augmenting Paths. The Ford-	and graph theoretical
	Fulkerson Labeling Algorithm, 15L A Concrete	concepts and
	Example, Integer Solutions of Linear Programming	networking to
	Problems. Combinatorial Applications of Network	understand Computer
	Flows: Introduction, Matching in Bipartite Graphs,	Science concepts and
	Chain partitioning, Pólya's Enumeration Theorem:	apply them to solve
	Coloring the Vertices of a Square.	problems

USCS306

Physical Computing and IoT Programming

Unit	Syllabus	Outcomes
Ι	SoC and Raspberry Pi System on Chip : What is System on chip? Structure of System on Chip.	Students understood SoC & its architecture.
	SoC products : FPGA, GPU, APU, Compute Units. ARM 8 Architecture: SoC on ARM 8. ARM 8 Architecture	StudentslearnedvariousSoCproducts in the market.StudentsunderstoodARM processor
	Introduction	architecture.
	Introduction to Raspberry Pi: Introduction to Raspberry Pi, Raspberry Pi Hardware, Preparing your raspberry Pi.	They got to know about one of the most famous SoC in the market ie. Raspberry Pi, used in a wide range of embedded applications.
	Raspberry Pi Boot : Learn how this small SoC boots without BIOS. Configuring boot sequences and hardware.	
Π	ProgrammingRaspberryPiRaspberryPiandLinux:AboutRaspbian,LinuxCommands,ConfiguringRaspberryPiwithLinuxCommandsPrograminginterfaces:IntroductiontoNode.js,Python.RaspberryPiInterfaces:UART,GPIO,I2C,SPIUsefulImplementations:CrossCompilation,PulseWidthModulation,SPI for Camera.	Students learned to work with the Raspbian OS through commands as well as GUI. Students learned various programming interfaces and hardware interfaces used for connecting to different peripheral devices. They understood the concept of cross compilation, pulse width modulation and their needs.

III	Introduction to IoT : What is IoT?	Students got to know about IoT and its real life applications
	Program. IoT and Protocols IoT Security: HTTP, UPnp, CoAP, MQTT, XMPP.	Students understood various security risks associated with the data communication between IoT devices
	IoT Service as a Platform : Clayster, Thinger.io, SenseIoT, carriots and Node RED.	and as a security measure they learned various protocols used for IoT security.
	IoT Security and Interoperability : Risks, Modes of Attacks, Tools for Security and Interoperability	Students get introduced to various IoT services available for the development of IoT applications

USCS307

Skill Enhancement: Web Programming

Unit	Syllabus	Outcomes
Ι	HTML5: Fundamental Elements of	Students learned how to write html
	HTML. Formatting Text in HTML	files for designing webpages.
	Organizing Text in HTML. Links and	They learned various html elements to
	URLs in HTML. Tables in HTML.	display contents on a webpage.
	Images on a Web Page, Image	Students learned how to separate
	Formats, Image Maps, Colors,	contents and style elements and how
	FORMs in HTML, Interactive	to give consistent look and feel to all
	Elements, Working with Multimedia -	the web pages of a website using
	Audio and Video File Formats,	CSS.
	HTML elements for inserting Audio /	
	Video on a web page	
	CSS: Understanding the Syntax of	
	CSS, CSS Selectors, Inserting CSS in	
	an HTML Document, CSS properties	
	to work with background of a Page,	
	CSS properties to work with Fonts	
	and Text Styles, CSS properties for	
	positioning an element	
II	JavaScript: Using JavaScript in an	Students learned to design interactive
	HTML Document, Programming	web pages using javascript.
	Fundamentals of JavaScript –	Students understood the use of XML
	Variables, Operators, Control Flow	and are able to write XML files,
	Statements, Popup Boxes, Functions –	validate them against DID and
	Defining and invoking a Function,	using XSLT
	Defining a Return Statement Calling	using ASL1.
	Functions with Timer IavaScript	
	Objects - String RegExp Math Date	
	Browser Objects - Window Navigator	
	History, Location, Document, Cookies,	
	Document Object Model, Form	
	Validation using JavaScript	
	XML: Comparing XML with HTML,	
	Advantages and Disadvantages of	
	XML, Structure of an XML	
	Document, XML Entity References,	
	DTD, XSLT: XSLT Elements and	
	Attributes - xsl:template, xsl:apply-	
	templates, xsl:import, xsl:call-	
	template, xsl:include, xsl:element,	
	xsi:attribute, e xsi:attribute-set,	
III	XSI:value-of	Students understood how to undete a
111	AJAA: AJAA wed Application Model How ALAY Works	students understood now to update a
	XMI HttnRequest Object Properties	ATAX
	miniproducsi Objeci – i iopetiles	пјпл,

and Methods, Handling asynchronous	Students learned how to validate user
requests using AJAX	inputs, how to work with files and
PHP : Variables and Operators,	database using server side scripting
Program Flow, Arrays, Working with	language PHP.
Files and Directories, Working with	Students learned to apply various
Databases, Working with Cookies,	animations and effects to the html
Sessions and Headers Introduction to	elements using JQuery.
jQuery:	
Fundamentals, Selectors, methods to	
access HTML attributes, methods for	
traversing, manipulators, events,	
effects	

Class: SYCS Semester:IV

USCS401	Fundamentals of Algorithms(Credits : 02 Lectures/Week:03)
---------	---

Unit	Syllabus	Outcomes
Ι	Introduction to algorithm. Why to	Students understood basic principles
	analysis algorithm. Running time	of algorithm design and why
	analysis, How to Compare	algorithm analysis is important
	Algorithms, Rate of Growth,	
	Commonly Used Rates of Growth,	
	Types of Analysis, Asymptotic	
	Notation, Big-O Notation, Omega- Ω	
	Notation, Theta- Θ Notation,	
	Asymptotic Analysis, Properties of	
	Notations, Commonly used	
	Logarithms and Summations,	
	Performance characteristics of	
	algorithms, Master Theorem for	
	Divide and Conquer, Divide and	
	Conquer Master Theorem: Problems	
	& Solutions, Master Theorem for	
	Subtract and Conquer Recurrences,	
II	Trace algorithma: What is a Trac?	Students understood how to
11	Glossary Binary Trees Types of	implement algorithms in Python
	Binary Trees Properties of Binary	implement algorithms in rython
	Trees Binary Tree Traversals Generic	
	Trees (N-ary Trees). Threaded Binary	
	Tree Traversals. Expression Trees.	
	Binary Search Trees (BSTs), Balanced	
	Binary Search Trees, AVL (Adelson-	
	Velskii and Landis) Trees Graph	
	Algorithms: Introduction, Glossary,	
	Applications of Graphs, Graph	
	Representation, Graph Traversals,	
	Topological Sort, Shortest Path	
	Algorithms, Minimal Spanning Tree	
	Selection Algorithms: What are	
	Selection Algorithms? Selection by	
	Algorithm Linear Selection Algorithm	
	Modian of Modians Algorithm	
	Finding the K Smallest Elements in	
	Sorted Order	
III	Algorithms Design Techniques:	Understood how to transform new
	Introduction, Classification.	problems into algorithmic problems
	Classification by Implementation	with efficient solutions . To
	Method, Classification by Design	understand algorithm design
	Method Greedy Algorithms:	techniques for solving different
	Introduction, Greedy Strategy,	problems
	Elements of Greedy Algorithms,	
	Advantages and Disadvantages of	

Greedy Method, Greedy Applications,	
Understanding Greedy Technique	
Divide and Conquer Algorithms:	
Introduction, What is Divide and	
Conquer Strategy? Divide and	
Conquer Visualization, Understanding	
Divide and Conquer, Advantages of	
Divide and Conquer, Disadvantages of	
Divide and Conquer, Master Theorem,	
Divide and Conquer Applications	
Dynamic Programming: Introduction,	
What is Dynamic Programming	
Strategy? Properties of Dynamic	
Programming Strategy, Problems	
which can be solved using Dynamic	
Programming, Dynamic Programming	
Approaches, Examples of Dynamic	
Programming Algorithms,	
Understanding Dynamic	
Programming, Longest Common	
Subsequence	

USCS402

Advanced Java(Credits : 02 Lectures/Week: 03)

Unit	Syllabus	Outcomes
I	Swing: Need for swing components, Difference between AWT and swing, Components hierarchy, Panes, Swing components: Jlabel, JTextField and JPasswordField, JTextAres, JButton, JCheckBox, JRadioButton, JComboBox and JList JDBC: Introduction, JDBC Architecture, Types of Drivers, Statement, ResultSet, Read Only ResultSet, Updatable ResultSet, Forward Only ResultSet, Scrollable ResultSet, PreparedStatement, Connection Modes, SavePoint, Batch Updations, CallableStatement, BLOB & CLOB	Understood the concepts related to Java Technology
Π	Servlets: Introduction, Web application Architecture, Http Protocol & Http Methods, Web Server & Web Container, Servlet Interface, GenericServlet, HttpServlet, Servlet Life Cycle, ServletConfig, ServletContext, Servlet Communication, Session Tracking Mechanisms JSP: Introduction, JSP LifeCycle, JSP Implicit Objects & Scopes, JSP Directives, JSP Scripting Elements, JSP Actions: Standard actions and customized actions	Student explore and understand use of Java Server Programming
III	Java Beans: Introduction, JavaBeans Properties, Examples Struts 2: Basic MVC Architecture, Struts 2 framework features, Struts 2 MVC pattern, Request life cycle, Examples, Configuration Files, Actions, Interceptors, Results & Result Types, Value Stack/OGNL JSON: Overview, Syntax, DataTypes, Objects, Schema, Comparison with XML, JSON with Java	Explored and understood use of Struts framework.

Unit	Syllabus	Outco	mes
Ι	Introduction Network Models:	1.	Students understood the
	Introduction to data communication.		concepts of networking.
	Components Data Representation	2.	Students learned about various
	Data Flow Networks Network		layers in detail.
	Criteria Physical Structures Network		
	types Local Area Network Wide		
	Area Network Switching The		
	Internet Accessing the Internet		
	standards and administration Internet		
	Standards Network Models Protocol		
	lavering Scenarios Principles of		
	Protocol Levering Logical		
	Connections TCD/ID Protocol Suite		
	Levered Architecture Levers in 151		
	the TCD/ID Protocol Suite		
	Encongulation and Decongulation		
	Addressing Multiplaying and		
	Addressing, Multiplexing and Demultiplexing Detailed introduction		
	to Physical Layor Detailed		
	introduction to Data Link Layer		
	Detailed introduction to Network		
	Lever Detailed introduction to Network		
	Layer, Detailed introduction to		
	introduction to Application Lower		
	Data and Signala Analag and Digital		
	Data and Signals, Analog and Digital		
	Data, Analog and Digital Signals,		
	Sine wave Phase, wavelength, Time		
	and Frequency Domains, Composite		
	Signals, Bandwidth, Digital Signal,		
	Dirital Signals Transmission		
	Digital Signals, Transmission		
	Impairments, Attenuation, Distortion,		
	Noise, Data Kate Limits,		
	Throughout Later av (Dalay)		
П	Introduction to Drysical Layer and	1	Studente were able to
11	Deta Link Layer Digital Transmission	1.	students were able to
	digital to digital conversion Line		about physical and data link
	Coding Line Coding Schemes		about physical and data link
	country, Line Country Schemes,	2	Idyel. Studente leerned herry dete in
	analog-to-uigital conversion, Pulse	۷.	represented in these laws
	Transmission Modes Devellat		representeu in these layers.
	Transmission Social Transmission		
	Analog Transmission disital to analog		
	Analog Hansinission, digital-to-analog		
	Analog Conversion Ameliando Chife		
	Analog Conversion, Amplitude Shift		
	Neying, Frequency Shift Keying,		
	Phase Shift Keying, analog-to-analog		

Course: USCS403 Computer Networks (Credits :02 Lectures/Week:03)

	Conversion, Amplitude Modulation		
	(AM), Frequency Modulation (FM),		
	Phase Modulation (PM), Multiplexing,		
	Frequency-Division Multiplexing.		
	Wavelength-Division Multiplexing.		
	Time-Division Multiplexing		
	Transmission Media Guided Media		
	Twisted-Pair Cable Coaxial Cable		
	Fiber-Optic Cable Switching Three		
	Mathods of Switching Circuit		
	Switched Networks Decket Switching		
	Introduction to Data Link Lawer		
	Nodes and Links Services Two Sub		
	Nodes and Links, Services, Two Sub-		
	layers, Inree Types of addresses,		
	Address Resolution Protocol (ARP).		
	Error Detection and Correction,		
	introduction, Types of Errors,		
	Redundancy, Detection versus		
	Correction,		
III	Network layer, Transport Layer Media	1.	This unit explained the in-
	Access Control (MAC), random		depth details about the
	access, CSMA, CSMA/CD,		network, transport and
	CSMA/CA, controlled access,		application layers.
	Reservation, Polling, Token Passing,	2.	
	channelization, FDMA, TDMA,		
	CDMA. Connecting Devices and		
	Virtual LANs, connecting devices,		
	Hubs, Link-Layer 15L Switches,		
	Routers, Introduction to Network		
	Layer, network layer services,		
	Packetizing, Routing and Forwarding,		
	Other Services. IPv4 addresses.		
	Address Space, Classful Addressing,		
	Unicast Routing, General Idea, Least-		
	Cost Routing Routing Algorithms		
	Distance-Vector Routing Link-State		
	Routing Path-Vector Routing		
	Introduction to Transport I aver		
	Transport-Layer Services		
	Connectionless and Connection		
	Oriented Protocols Transport Laver		
	Protocols Service Port Numbers User		
	Detegram Protocol Ligar Detegram		
	UDD Convision UDD Applications		
	Transmission Control Durts of TCD		
	Transmission Control Protocol, TCP		
	Services, TCP Features, Segment.		

USCS404 Software Engineering		
Unit	Syllabus	Outcomes
Ι	Introduction: The Nature of Software, Software Engineering, The Software Process, Generic Process Model, The Waterfall Model, Incremental Process Models, Evolutionary Process Models, Concurrent Models, Component-Based Development, The Unified Process Phases, Agile Development- Agility, Agile Process, Extreme Programming Requirement	 4) Students have learned software development life cycle through framework activities and umbrella activities. 5) Students learned about various process models and agile development. 6) Students gained knowledge about
	Analysis and System Modeling: Requirements Engineering, Eliciting Requirements, SRS Validation, Components of SRS, Characteristics of SRS, Object- oriented design using the UML - Class diagram, Object diagram, Use case diagram, Sequence diagram, Collaboration diagram, State chart diagram, Activity diagram, Component diagram, Deployment diagram.	 requirement engineering, SRS and its characteristics, validations. 7) Understood have to construct UML project diagrams.
ΙΙ	System Design: System/Software Design, Architectural Design, Low-Level Design Coupling and Cohesion, Functional-Oriented Versus The Object-Oriented Approach, Design Specifications, Verification for Design, Monitoring and Control for Design Software Measurement and Metrics: Product Metrics – Measures, Metrics, and Indicators, Function-Based Metrics, Metrics for Object- Oriented Design, Operation-Oriented Metrics, User Interface Design Metrics, Metrics for Source Code, Halstead Metrics Applied to Testing, Metrics for Maintenance, Cyclomatic Complexity, Software Measurement - Size-Oriented, Function- Oriented Metrics, Metrics for Software Quality Software Project Management: Estimation in Project Planning Process –Software Scope And Feasibility, Resource Estimation, Empirical Estimation Models – COCOMO II, Estimation for Agile Development, The Make/Buy Decision, Project Scheduling - Basic Principles, Relationship Between People and Effort Effort Distribution Time-	 9) Students learned system design, its specifications, metrics like cohesion and coupling. 10) Understood various software metrics with regard to elements like functions-based, object oriented, source code, quality, testing. 11) Learned how to calculated cyclomatic complexity metric. 12) Students have learned concepts like resource estimation, COCOMO model, project scheduling and effort distribution.

	Line Charts	
III	Risk Management - Software Risks, Risk	9) Students learned what
	Identification, Risk Projection and Risk	is software risk, risk
	Refinement, RMMM Plan	identification, risk
		projection, risk
	Software Quality Assurance: Elements of	refinement and RMMM
	SOA SOA Tasks Goals and Metrics	10) Students know about
	Earmal Approaches to SOA Six Sigma	software quality
	Formal Approaches to SQA, Six Signia,	assurance and its
	Software Reliability, The ISO 9000 Quality	standards, Six sigma.
	Standards, Capability Maturity Model	11) Understood testing
		concepts like
	Software Testing : Verification and	Also known shout
	Validation, Introduction to Testing, Testing	testing principles
	Principles, Testing Objectives, Test Oracles,	testing levels.
	Levels of Testing, White-Box	12) Learned about White
	Testing/Structural Testing, Functional/Black-	Box testing and Black
	Box Testing, Test Plan, Test-Case Design	Box testing.

Unit	Syllabus	Outcomes
Ι	Field: Introduction to complex numbers,	Appreciate the relevance of
	numbers in Python, Abstracting over fields,	linear algebra in the field of
	Playing with GF(2), Vector Space: Vectors	computer science.
	are functions, Vector addition, Scalar-vector	
	multiplication, Combining vector addition	
	and scalar multiplication, Dictionary-based	
	representations of vectors, Dot-product,	
	Solving a triangular system of linear	
	equations. Linear combination, Span, The	
	geometry of sets of vectors, Vector spaces,	
TT	Linear systems, homogeneous and otherwise	
11	Matrix: Matrices as vectors, Transpose,	Students understand master
	Matrix-vector and vector-matrix	properties of matrices
	multiplication in terms of linear	including now to use them to
	in terms of det products Null space	solve linear systems of
	Computing sparse matrix vector product	used in linear transformations
	Linear functions Matrix-matrix	between vector spaces
	multiplication Inner product and outer	between vector spaces
	product. 15L From function inverse to matrix	
	inverse Basis: Coordinate systems, Two	
	greedy algorithms for finding a set of	
	generators, Minimum Spanning Forest and	
	GF(2), Linear dependence, Basis, Unique	
	representation, Change of basis, first look,	
	Computational problems involving finding a	
	basis Dimension: Dimension and rank,	
	Direct sum, Dimension and linear functions,	
	The annihilator	
III	Echelon form, Gaussian elimination over	Instill a computational thinking
	GF(2), Solving a matrix-vector equation	while learning linear algebra.
	using Gaussian elimination, Finding a basis	
	for the null space, Factoring integers, Inner	
	Product: The inner product for vectors over the reals. Orthogonality. Orthogonalization:	
	Projection orthogonal to multiple vectors	
	Projection officiogonal to mutually orthogonal	
	vectors Building an orthogonal set of	
	generators Orthogonal complement	
	Eigenvector: Modeling discrete dynamic	
	processes. Diagonalization of the Fibonacci	
	matrix, Eigenvalues and eigenvectors.	
	Coordinate representation in terms of	
	eigenvectors, The Internet worm, Existence	
	of eigenvalues, Markov chains, Modeling a	
	web surfer: PageRank.	

Course: USCS405 Subject: Linear Algebra using Python

USCS406

.NET Technologies

Unit	Syllabus	Outcomes
Ι	The .NET Framework: .NET Languages, Common Language Runtime, .NET Class Library	Students understood the .NET framework and various category of application that they can build using NET
	C# Language Basics: Comments, Variables and Data Types, Variable Operations, Object-Based Manipulation, Conditional Logic, Loops, Methods, Classes, Value Types and Reference Types, Namespaces and Assemblies, Inheritance, Static Members, Casting Objects, Partial Classes	Students learned various programming concepts of c# language and now they are able to develop Console applications using C#. Students learned basics of ASP.NET and various files and folders in ASP.NET project.
	ASP.NET: Creating Websites,	
	Anatomy of a Web Form - Page Directive, Doctype, Writing Code - Code-Behind Class, Adding Event Handlers, Anatomy of an ASP.NET Application - ASP.NET File Types, ASP.NET Web Folders, HTML Server Controls - View State, HTML Control Classes, HTML Control Events, HtmlControl Base Class, HtmlContainerControl Class,	
	HtmlInputControl Class, Page Class,	
Π	global.asax File, web.config File Web Controls: Web Control Classes, WebControl Base Class, List Controls, Table Controls, Web Control Events and AutoPostBack, Page Life Cycle State Management: ViewState, Cross-Page Posting, Query String, Cookies, Session State, Configuring Session State, Application State Validation: Validation Controls, Server-Side Validation, Client-Side Validation, HTML 5 Validation, Manual Validation, Validation with Regular Expressions Rich Controls: Calendar Control, AdRotator Control, MultiView Control Themes and Master Pages: How Themes Work, Applying a Simple Theme, Handling Theme Conflicts, Simple Master Page and Content Page	Students learned various asp.net web controls. Students learned importance of website validation, types of validation and Validation controls in asp.net. Students learned how to manage user's state in website using various state management techniques. They learn how to give a consistent look and feel to a website using master pages and themes. Students practiced various ways to provide navigation to the user in the website.

	Connecting Master pages and Content	
	Pages, Master Page with Multiple	
	Content Regions, Master Pages and	
	Relative Paths	
	Website Navigation: Site Maps, URL	
	Mapping and Routing, SiteMapPath	
	Control, TreeView Control, Menu	
	Control	
III	ADO.NET: Data Provider Model,	Students learned to store data in a
	Direct Data Access - Creating a	database using ADO.NET classes.
	Connection, Select Command,	Students learned various easy to
	DataReader, Disconnected Data	handle data controls
	Access	They understood how to read and
	Data Binding: Introduction, Single-	write xml document using c#.
	Value Data Binding, Repeated-Value	Students understood the concept and
	Data Binding, Data Source Controls –	types of caching.
	SqlDataSource	Students learned how to use LINQ for
	Data Controls: GridView,	accessing data from various data
	DetailsView, FormView	sources.
	Working with XML: XML Classes –	Students learned how to update
	XMLTextWriter, XMLTextReader	webpage without refreshing it using
	Caching: When to Use Caching,	AJAX controls.
	Output Caching, Data Caching	
	LINQ: Understanding LINQ, LINQ	
	Basics,	
	ASP.NET AJAX: ScriptManager,	
	Partial Refreshes, Progress	
	Notification, Timed Refreshes	

USCS407 Skill Enhancement: Android Developer Fundamentals

Unit	Syllabus	Outcomes
Ι	What is Android? Obtaining the required tools, creating first android app, understanding the components of screen, adapting display orientation, action bar, Activities and Intents, Activity Lifecycle and Saving State, Basic Views: TextView, Button, ImageButton, EditText, CheckBox, ToggleButton, RadioButton, and RadioGroup Views, progressBarView, AutoCompleteTextView, TimePicker View, DatePicker View, ListView View, Spinner View	Students understood the requirements of Mobile programming environment. Students. Learned about basic methods, tools and techniques for developing Apps. Learned android Activity and its lifecycle. Learned various UI components for designing android app. Learned intents for transferring data from one screen to another.
Π	User Input Controls, Menus, Screen Navigation, RecyclerView, Drawables, Themes and Styles, Material design, Providing resources for adaptive layouts, AsyncTask and AsyncTaskLoader, Connecting to the Internet, Broadcast receivers, Services, Notifications, Alarm managers, Transferring data efficiently	Students learned more attractive UI elements such as FAB, Snackbar, Menus. Students learned to create interactive android app that can generate alarm, notification and popup dialogs. Students understood the need for user permissions while installing apk in mobile. Students learned to connect their app to the internet and retrieve data from internet.
III	Data - saving, retrieving, and loading: Overview to storing data, Shared preferences, SQLite primer, store data using SQLite database, ContentProviders, loaders to load and display data, Permissions, performance and security, Firebase and AdMob, Publish your app	Students understood various types of storages in android. Students learned how the data is shared between applications. Students understood the ways and steps to publish android app on playstore/appstore. They understood the use of firebase and AdMob for earning money by developing app.

Class: TYCS

Semester: V

USCS502

Linux Server Administration (Credits: 03 Lectures/Week:03)

Unit	Syllabus	Outcomes
Ι	Introduction: Technical Summary of Linux Distributions, Managing Software Single-Host Administration: Managing Users and Groups, Booting and shutting down processes, File Systems, Core System Services, Process of configuring, compiling, Linux Kernel Networking and Security: TCP/IP for System Administrators, basic network Configuration, Linux Firewall (Netfilter), System and network security	Student will be able to develop Linux based systems and maintain.
Π	Internet Services: Domain Name System (DNS), File Transfer Protocol (FTP), Apache web server, Simple Mail Transfer Protocol (SMTP), Post Office Protocol and Internet Mail Access Protocol (POP and IMAP), Secure Shell (SSH), Network Authentication, OpenLDAP Server, Samba and LDAP, Network authentication system (Kerberos), Domain Name Service (DNS), Security	Student will be able to install appropriate service on Linux server as per requirement.
III	Intranet Services: Network File System (NFS), Samba, Distributed File Systems (DFS), Network Information Service (NIS), Lightweight Directory Access Protocol (LDAP), Dynamic Host Configuration Protocol (DHCP), MySQL, LAMP Applications File Servers, Email Services, Chat Applications, Virtual Private Networking.	Student will have proficiency in Linux server administration.

Course: USCS503 Software Testing and Quality Assurance

Unit	Syllabus	Outcomes
Ι	Software Testing and Introduction to quality : Introduction, Nature of errors, an example for Testing, Definition of Quality , QA, QC, QM and SQA , Software Development Life Cycle, Software Quality Factors Verification and Validation : Definition of V &V , Different types of V & V Mechanisms, Concepts of Software Reviews, Inspection and Walkthrough Software Testing Techniques : Testing Fundamentals, Test Case Design, White Box Testing and its types, Black Box Testing and its types	 Students learned Software Testing techniques. Learned various software testing methods and strategies. Understood a variety of software metrics, and identify defects and managing those defects for improvement in quality for given software.
11	Software Testing Strategies : Strategic Approach to Software Testing, Unit Testing, Integration Testing, Validation Testing, System Testing Software Metrics : Concept and Developing Metrics, Different types of Metrics, Complexity metrics Defect Management: Definition of Defects, Defect Management Process, Defect	 Students learned Software Testing techniques to understand how testing methods can be used as an effective tools in providing quality assurance concerning for software. Students learned skills to design
	Reporting, Metrics Related to Defects, Using Defects for Process Improvement.	test case plan for testing software
III	SoftwareQualityAssurance :QualityConcepts,QualityMovement,BackgroundIssues,SQAactivities,SoftwareReviews,FormalTechnicalReviews,Formalapproaches toSQA,StatisticalQualityAssurance,SoftwareReliability,TheISO9000QualityStandards,,SQAPlan,Sixsigma,Informal Reviews15LQualityImprovement:Introduction,ParetoDiagrams,Cause-effectDiagrams,ScatterDiagrams,RunchartsQualityCostsQualityCosts,TypesofQualityCosts,UtilizingQualityCostsforDecision-MakingMaking	 Understood importance of SQA activities, SQA strategy. Learned about formal technical review report for software quality control and assurance.

Information and Network Security

Unit	Syllabus	Outcon	mes
Ι	Introduction: Security Trends, The	1.	Students were able to
	OSI Security Architecture, Security		understand the various
	Attacks, Security Services, Security	2	encryption techniques.
	Mechanisms Classical Encryption	2.	Students understood why
	Techniques: Symmetric Cipher		security in important and it
	Model, Substitution Techniques,		can be achieved by using
	Transposition Techniques,	3	Students understood basic
	Steganography, Block Cipher	5.	concepts of computer security
	Principles, The Data Encryption		including network security
	Standard, The Strength of DES, AES		and cryptography.
	(round details not expected), Multiple		
	Cipher Modes of Operation Stream		
	Ciphers Public-Key Cryptography and		
	RSA: Principles of Public-Key		
	Cryptosystems. The RSA Algorithm		
II	Key Management: Public-Key	1.	This unit explained students
	Cryptosystems, Key Management,		the advanced encryption
	Diffie-Hellman Key Exchange		techniques using advanced
	Message Authentication and Hash		hash functions.
	Functions: Authentication	2.	Students understood the
	Requirements, Authentication		principles and practices of
	Functions, Message Authentication		cryptographic techniques.
	Codes, Hash Functions, Security of		
	Hash Functions and Macs, Secure		
	Hash Algorithm, HMAC		
	Digital Signatures and Authentication:		
	Protocola Digital Signature Standard		
	Authentication Applications: Kerberos		
	X 509 Authentication Public-Key		
	Infrastructure		
III	Electronic Mail Security: Pretty	1.	Students were able to
	Good Privacy, S/MIME		understand key
	IP Security: Overview, Architecture,		managements, various
	Authentication Header,		firewalls, security in transport
	Encapsulating Security Payload,		layer.
	Combining Security Associations,	2.	Students understood a variety
	Key Management		of generic security threats and
	Web Security: Web Security		vulnerabilities, and identify &
	Considerations, Secure Socket Layer		analyze particular security
	and Iransport Layer Security, Secure		problems for a given
	Electronic Transaction	2	application.
	Tachniques Intrusion Detection	5.	students understood various
	Malicious Software: Viruses and		protocols for network
	Related Threats Virus		threats in a network
	Countermeasures DDOS		incats in a littwork
	Firewalls: Firewall Design Principles		
	Types of Firewalls		

Course: USCS506 Subject: Web Services

Unit	Syllabus	Outcomes
Ι	Web services basics : What Are Web Services? Types of Web Services Distributed computing infrastructure, overview of XML, SOAP, Building Web Services with JAX-WS, Registering and Discovering Web Services, Service Oriented Architecture, Web Services Development Life Cycle, Developing and consuming simple Web Services across platform	Students understood the evolution of web technology from static websites to dynamic and then to web services. Students learned why the XML and JSON are standards for communication over web. Students understood the roles & operations involved in a lifecycle of web service development. Students understood the use of WSDL and UDDI for web service description and discovery. Students have practically used SOAP web services freely available over internet for designing a web page and they are able to design their own SOAP based web service.
Π	The REST Architectural style : Introducing HTTP, The core architectural elements of a RESTful system, Description and discovery of RESTful web services, Java tools and frameworks for building RESTful web services, JSON message format and tools and frameworks around JSON, Build RESTful web services with JAX-RS APIs, The Description and Discovery of RESTful Web Services, Design guidelines for building RESTful web services, Secure RESTful web services	Students learned the next generation web service technology that is REST. Students learned various elements of RESTful web service, its description and discovery. Students understood what is API. Students are able to differentiate between XML and JSON. Students are able to differentiate between SOAP and RESTful web service. They studied various tools for building RESTful API and also how to secure RESTful web services.
III	Developing Service-Oriented Applications with WCF : What Is Windows Communication Foundation, Fundamental Windows Communication Foundation Concepts, Windows Communication Foundation Architecture, WCF and .NET Framework Client Profile, Basic WCF Programming, WCF Feature Details. Web Service QoS	Students learned how to develop SOAP as well as RESTful web service in visual studio. Students understood fundamentals and architecture of WCF service. Students understood concept of interfaces and types of bindings in WCF web service. They understood various messaging patterns in WCF web service. Students understood quality measures of web service.

Unit	Syllabus	Outcomes
Ι	Mathematics for Computer Graphics,	Learner studied Graphics and
	DirectX Kickstart: Cartesian	gamming concepts with present
	Coordinate system: The Cartesian XY-	working style of developers where
	plane, Function Graphs, Geometric	everything remains on internet and
	Shapes, Polygonal Shapes, Areas of	they need to review it.
	Shapes, Theorem of Pythagoras in 2D,	Understand it, be a part of
	Coordinates, Theorem of Pythagoras in	community and learn.
	3D, 3D Polygons, Euler's Rule	
	Vectors: Vector Manipulation,	
	multiplying a Vector by a Scalar,	
	Vector Addition and Subtraction,	
	Position Vectors, Unit Vectors,	
	Cartesian Vectors, Vector	
	Multiplication, Scalar Product,	
	Example of the Dot Product, The Dot	
	Product in Lighting Calculations, The	
	Dot Product in Back-Face Detection,	
	The Vector Product, The Right-Hand	
	Rule, deriving a Unit Normal Vector	
	for a Triangle Areas, Calculating 2D	
	Areas Transformations: 2D	
	Transformations, Matrices,	
	Homogeneous Coordinates, 3D	
	Transformations, Change of Axes,	
	Direction Cosines, rotating a Point	
	about an Arbitrary Axis, Transforming	
	vectors, Determinants, Perspective	
	Projection, Interpolation DirectX:	
	understanding GPU and GPU	
	from CPU Architectures?	
	Understanding how to solve by GPU?	
П	Direct X Pipeline and Programming:	The student are able to discuss and
11	Introduction To DirectX 11. COM	define the terms and principles
	Textures and Resources Formats The	of game design and development
	swap chain and Page flipping Depth	of guine design and development.
	Buffering. Texture Resource Views.	
	Multisampling Theory and MS in	
	Direct3D, Feature Levels Direct3D 11	
	Rendering Pipeline: Overview, Input	
	Assembler Stage (IA), Vertex Shader	
	Stage (VS), The Tessellation Stage	
	(TS), Geometry Shader Stage (GS),	
	Pixel Shader Stage (PS), Output	
	merger Stage (OM) Understanding	
	Meshes or Objects, Texturing,	
	Lighting, Blending. Interpolation and	
	Character Animation: Trigonometry:	
	The Trigonometric Ratios, Inverse	
	Trigonometric Ratios, Trigonometric	
	Relationships, The Sine Rule, The	
	Cosine Rule, Compound Angles,	

	Perimeter Relationships Interpolation: Linear Interpolant, Non-Linear Interpolation, Trigonometric Interpolation, Cubic Interpolation, Interpolating Vectors, Interpolating Quaternions Curves: Circle, Bezier, B- Splines Analytic Geometry: Review of Geometry, 2D Analytic Geometry, Intersection Points, Point in Triangle, and Intersection of circle with straight	
III	Ine. Introduction to Rendering Engines: Understanding the current market Rendering Engines. Understanding AR, VR and MR.Depth Mappers, Mobile Phones, Smart Glasses, HMD's Unity Engine: Multi-platform publishing, VR + AR: Introduction and working in Unity, 2D, Graphics, Physics, Scripting, Animation, Timeline, Multiplayer and Networking, UI, Navigation and Pathfinding, XR, Publishing. Scripting: Scripting Overview, Scripting Tools and Event Overview XR: VR, AR, MR, Conceptual Differences. SDK, Devices	Virtual reality used to enhance student learning and engagement. VR education transform the way educational content is delivered; it works on the premise of creating a virtual world — real or imagined — and allows users not only see it but also interact with it. Being immersed in what you're learning motivates you to fully understand it. It'll require less cognitive load to process the information.

Class: TYCS Semester:VI

Course: USCS601 Wireless Sensor Networks and Mobile Communication

Unit	Syllabus	Outcomes
I	Introduction: Introduction to Sensor Networks, unique constraints and challenges. Advantage of Sensor Networks, Applications of Sensor Networks, Mobile Adhoc NETworks (MANETs) and Wireless Sensor Networks, Enabling technologies for Wireless Sensor Networks. Sensor Node Hardware and Network Architecture: Single-node architecture, Hardware components & design constraints, Operating systems and execution environments, introduction to TinyOS and nesC. Network architecture, Optimization goals and figures of merit, Design principles for WSNs, Service interfaces of WSNs, Gateway concepts. Medium Access Control Protocols:	1. Students understood wireless and adhoc network, connecting different wireless devices and their compatibility. 2. Students understood information is gathered many different ways from these devices. 1. Students were able to
	Medium Access Control Protocols: Fundamentals of MAC Protocols, MAC Protocols for WSNs, Sensor-MAC Case Study. 15L Routing Protocols : Data Dissemination and Gathering, Routing Challenges and Design Issues in Wireless Sensor Networks, Routing Strategies in Wireless Sensor Networks. Transport Control Protocols : Traditional Transport Control Protocols, Transport Protocol Design Issues, Examples of Existing Transport Control Protocols, Performance of Transport Control Protocols.	1. Students were able to list various applications of wireless sensor networks, describe the concepts, protocols, design, implementation and use of wireless sensor networks.
III	Introduction, Wireless Transmission and Medium Access Control: Applications, A short history of wireless communication. Wireless Transmission: Frequency for radio transmission, Signals, Antennas, Signal propagation, Multiplexing, Modulation, Spread spectrum, Cellular systems. Telecommunication, Satellite and Broadcast Systems: GSM: Mobile services, System architecture, Radio interface, Protocols, Localization And Calling, Handover, security, New data services; DECT: System architecture, Protocol architecture; ETRA, UMTS and IMT- 2000. Satellite Systems: History, Applications, Basics: GEO, LEO, MEO:	 Students were able to implement and evaluate new ideas for solving wireless sensor network design issues

Routing, Localization, Handover.	

Unit	Syllabus	Outcomes
Ι	Introduction to Cloud Computing, Characteristics and benefits of Cloud Computing, Basic concepts of Distributed Systems, Web 2.0, Service-Oriented Computing, Utility- Oriented Computing. Elements of Parallel Computing. Elements of Distributed Computing. Technologies for Distributed Computing. Cloud Computing Architecture. The cloud reference model. Infrastructure as a service. Platform as a service. Software as a service. Types of clouds.	Students learned in-depth concepts of Cloud Computing, cloud technologies, architecture, implantations and applications. Students understood strength and limitations of cloud computing. Students are able to compare the theoretical part of course with the real life applications they use in day to day life. Students understood three types and three reference models of cloud.
Π	Characteristics of Virtualized Environments. Taxonomy of Virtualization Techniques. Virtualization and Cloud Computing. Pros and Cons of Virtualization. Virtualization using KVM, Creating virtual machines, oVirt - management tool for virtualization environment. Open challenges of Cloud Computing	Students learned various types of virtualization and practically tried one of that. Students learned various types of hypervisors. Students are now able to create virtual machine on windows OS as well as Ubuntu OS. Students understood the challenges, pros and cons of virtualization as well as cloud computing.
III	Introduction to OpenStack, OpenStack test-drive, Basic OpenStack operations, OpenStack CLI and APIs, Tenant model operations, Quotas, Private cloud building blocks, Controller deployment, Networking deployment, Block Storage deployment, Compute deployment, deploying and utilizing OpenStack in production environments, Building a production environment, Application orchestration using OpenStack Heat	Students learned cloud computing reference models SAAS, PAAS and IAAS and practically tested various cloud services available over internet. Students learned various components of an open source software OpenStack which is a platform for developing their own cloud services. Students understood the complexity and co-ordination between various components of OpenStack.

Information Retrieval (Credits: 03 Lectures/Week: 03)

Unit	Syllabus	Outcomes
Ι	Introduction to Information Retrieval: Introduction, History of IR, Components of IR, and Issues related to IR, Boolean retrieval, Dictionaries and tolerant retrieval.	Provided an overview of the important issues in classical and web information retrieval.
Ш	Link Analysis and Specialized Search: Link Analysis, hubs and authorities, Page Rank and HITS algorithms, Similarity, Hadoop & Map Reduce, Evaluation, Personalized search, Collaborative filtering and content- based recommendation of documents and products, handling "invisible" Web, Snippet generation, Summarization, Question Answering, Cross- Lingual Retrieval.	Student understood to apply information retrieval models.
III	Web Search Engine: Web search overview, web structure, the user, paid placement, search engine optimization/spam, Web size measurement, search engine optimization/spam, Web Search Architectures. XML retrieval: Basic XML concepts, Challenges in XML retrieval, A vector space model for XML retrieval, Evaluation of XML retrieval, Text-centric versus data-centric XML retrieval.	Student understood the field of information retrieval and its relationship to search engines.

Data Science

Unit	Syllabus	Outcomes
I	Introduction to Data Science: What is Data? Different kinds of data, 15L Introduction to high level programming language + Integrated Development Environment (IDE), Exploratory Data Analysis (EDA) + Data Visualization, Different types of data sources, Data Management: Data Collection, Data cleaning/extraction, Data analysis & Modeling	The students should be able to understand & comprehend the problem; and should be able to define suitable statistical method to be adopted.
Π	Data Curation: Query languages and Operations to specify and transform data, Structured/schema based systems as users and acquirers of data Semi-structured systems as users and acquirers of data, Unstructured systems in the acquisition and structuring of data, Security and ethical considerations in relation to authenticating and authorizing access to data on remote systems, Software development tools, Large scale data systems, Amazon Web Services (AWS)	Students will get Advanced knowledge within Data Science, which includes data processing, data, machine learning, data extraction, statistics and typical programming languages for the area, including: Python and R. Specialized insight into data analysis. In-depth knowledge of scientific theory and methods in Data Science.
III	Statistical Modelling and Machine Learning: Introduction to model selection: Regularization, bias/variance tradeoff e.g. parsimony, AIC, BIC, Cross validation, Ridge regressions and penalized regression e.g. LASSO Data transformations: Dimension reduction, Feature extraction, Smoothing and aggregating Supervised Learning: Regression, linear models, Regression trees, Time-series Analysis, Forecasting, Classification: classification trees, Logistic regression, separating hyperplanes, k-NN Unsupervised Learning: Principal Components Analysis (PCA), k- means clustering, Hierarchical clustering, Ensemble methods	Apply knowledge about algorithms for statistical analysis, machine learning or data extraction in new areas within data science.

Unit	Syllabus	Outcomes
Ι	Information Security : Attacks and	Understood the ethics,
	Vulnerabilities Introduction to information	legality, methodologies and
	security : Asset. Access Control. CIA.	techniques of hacking
	Authentication, Authorization, Risk, Threat,	
	Vulnerability, Attack, Attack Surface,	Learned to identify security
	Malware, Security-Functionality-Ease of Use	vulnerabilities and
	Triangle Types of malware :Worms, viruses,	weaknesses in the target
	Trojans, Spyware, Rootkits Types of	applications.
	vulnerabilities : OWASP Top 10 : cross-site	
	scripting (XSS), cross site request forgery	
	(CSRF/XSRF), SQL injection, input	
	parameter manipulation, broken	
	authentication, sensitive information	
	disclosure, XML	
	External Entities, Broken access control,	
	Security Misconfiguration, Using components	
	with known vulnerabilities, Insufficient	
	Logging and monitoring, OWASP Mobile	
	Top 10, CVE Database Types of attacks and	
	their common prevention mechanisms :	
	Keystroke Logging, Denial of Service (DoS	
	/DDoS), Waterhole attack, brute force,	
	phishing and fake WAP, Eavesdropping,	
	Man-in-the-middle, Session Hijacking,	
	Clickjacking, Cookie Theft, URL	
	Obfuscation, buffer overflow, DNS poisoning,	
	ARP poisoning, Identity Theft, IoT Attacks,	
	BOTs and BOTNETs Case-studies : Recent	
	attacks – Yahoo, Adult Friend Finder, eBay,	
	Equifax, WannaCry, Target Stores, Uber, JP	
TT	Morgan Chase, Bad Rabbit	
11	Ethical Hacking -1 (Introduction and pre-	Understood the difference
	attack) Introduction: Black Hat VS. Gray Hat	Ethical hasking & coourity
	VS. while Hat (Ethical) hacking, why is Ethical backing needed? How is Ethical	auditing digital forensics
	hacking different from security auditing and	auditing, digital forensies
	digital forensics? Signing NDA Compliance	Learned about penetration
	and Regulatory concerns Black box vs White	testing using various tools
	box vs Black box. Vulnerability assessment	tosting using various tools.
	and Penetration Testing. Approach : Planning	
	- Threat Modeling, set up security verification	
	standards. Set up security testing plan – When,	
	which systems/apps, understanding	
	functionality, black/gray/white, authenticated	
	vs. unauthenticated, internal vs. external PT,	
	Information gathering, Perform Manual and	
	automated (Tools: WebInspect/Qualys,	
	Nessus, Proxies, Metasploit) VA and PT, How	
	WebInspect/Qualys tools work:	

	Crawling/Spidering, requests forging, pattern matching to known vulnerability database and Analyzing results, Preparing report, Fixing security gaps following the report Enterprise strategy : Repeated PT, approval by security testing team, Continuous Application Security Testing, Phases: Reconnaissance/foot- printing/Enumeration, Phases: Scanning, Sniffing	
III	Ethical Hacking :Enterprise Security Phases : Gaining and Maintaining Access : Systems hacking – Windows and Linux – Metasploit and Kali Linux, Keylogging, Buffer Overflows, Privilege Escalation, Network hacking - ARP Poisoning, Password Cracking, WEP Vulnerabilities, MAC Spoofing, MAC Flooding, IPSpoofing, SYN Flooding, Smurf attack, Applications hacking : SMTP/Email-based attacks, VOIP vulnerabilities, Directory traversal, Input Manipulation, Brute force attack, Unsecured login mechanisms, SQL injection, XSS, Mobile apps security, Malware analysis : Netcat Trojan, wrapping definition, reverse engineering Phases : Covering your tracks : Steganography, Event Logs alteration Additional Security Mechanisms : IDS/IPS, Honeypots and evasion techniques, Secure Code Reviews (Fortify tool, OWASP Secure Coding Guidelines)	Gain knowledge of testing and exploiting systems using various tools and understood the impact of hacking in real time machines